Due September 1, 2006
Name
Directions: Whenever appropriate, use in-line citations, including page numbers and people consulted when you present information obtained from discussion, a text, notes, or technology. Only write on one side of each page.
"No, no, you're not thinking, you're just being logical." -Niels Bohr, physicist (1885-1962)

Project Description

Discrete domain functions (sequences) have derivative formulas and rules that are analogous to the formlas and rules of interval domain functions. We will explore a few of them in this handout.
For example, consider the sequence given by the function $a(n)=n^{2}$ which is more precisely defined by

$$
\begin{array}{lll}
a & : & \mathbf{N} \cup\{0\} \rightarrow \mathbf{R} \\
a & : & n \rightarrow a(n)=n^{2}
\end{array}
$$

Then, $D_{n}[a(n)]=\frac{a(n+1)-a(n)}{1}$ becomes

$$
\begin{aligned}
D_{n}[a(n)] & =\frac{a(n+1)-a(n)}{1} \\
& =a(n+1)-a(n) \\
& =(n+1)^{2}-n^{2} \\
& =[(n+1)+n][(n+1)-n] \\
& =(2 n+1)(1) \\
& =2 n+1
\end{aligned}
$$

Thus we can say that the line segment joining terms n and $n+1$ of this sequence has slope $2 n+1$.As a specific example, the line segment joining terms 3 and $4, a(3)=9, a(4)=16$ has slope $m=2(3)+1$ because $\frac{16-9}{1}=2(3)+1$.
So we now have a formula for discrete derivatives: $D_{n}\left[n^{2}\right]=2 n+1$ and in a similar fashion we can compute $D_{n}\left[n^{3}\right]=3 n^{2}+3 n+1$ and $D_{n}\left[n^{4}\right]=4 n^{3}+6 n^{2}+4 n+1$.
Here are a couple of 'nicer' examples:

1. First, let p be a positive integer and define $n \underline{\underline{p}}=n(n-1)(n-2)(n-3) \cdots(n-p+1)$. As an example, $n^{3}=n(n-1)(n-2)$ and $(n+1)^{3}=(n+1)(n)(n-1)$. If we now compute the discrete derivative of the sequence $a(n)=n^{\underline{3}}$ we get the "familiar" formula $D_{n}\left[n^{\underline{3}}\right]=3 n^{\underline{2}}$

$$
\begin{aligned}
D_{n}[a(n)] & =\frac{a(n+1)-a(n)}{1} \\
& =a(n+1)-a(n) \\
& =(n+1)^{\underline{3}}-n^{\underline{3}} \\
& =(n+1)(n)(n-1)-n(n-1)(n-2) \\
& =n(n-1)((n+1)-(n-2)) \\
& =3 n(n-1) \\
& =3 n^{\underline{2}}
\end{aligned}
$$

2. Let $a(n)=3^{n}$. Then, $D_{n}\left[3^{n}\right]=2 \cdot 3^{n}$

$$
\begin{aligned}
D_{n}[a(n)] & =\frac{a(n+1)-a(n)}{1} \\
& =a(n+1)-a(n) \\
& =3^{n+1}-3^{n} \\
& =3^{n}(3-1) \\
& =2 \cdot 3^{n}
\end{aligned}
$$

Homework Problems

1. Show

$$
\begin{aligned}
D_{n}\left[n^{\underline{2}}\right] & =2 n^{\underline{1}} \\
& =2 n
\end{aligned}
$$

2. Show

$$
D_{n}\left[n^{\underline{4}}\right]=4 n^{\underline{3}}
$$

3. Show

$$
D_{n}\left[n^{\underline{5}}\right]=5 n^{4}
$$

4. Show

$$
D_{n}\left[n_{\underline{p}}^{\underline{p}}=p n_{\underline{\underline{p-1}}}^{\underline{1}}\right.
$$

5. Show

$$
D_{n}\left[2^{n}\right]=2^{n}
$$

6. Show

$$
D_{n}\left[4^{n}\right]=3 \cdot 4^{n}
$$

7. Show

$$
D_{n}\left[5^{n}\right]=4 \cdot 5^{n}
$$

8. Show

$$
D_{n}\left[r^{n}\right]=(r-1) r^{n}
$$

