November 14, 2006
Name

Technology used:

- Be sure to include in-line citations every time you use technology.
- Include a careful sketch of any graph obtained by technology in solving a problem.
- Only write on one side of each page.
- When given a choice, specify which problem(s) you wish graded.

Do any six (6) of the following problems

1. (15 points) Use the error bound formula for the Trapezoid Rule, $\left|E_{T}\right| \leq \frac{M(b-a)^{3}}{12 n^{2}}$ to estimate the minimum number of subintervals needed to approximate the integral $\int_{0}^{2} \sqrt{x+1} d x$ with an error of magnitude less than 10^{-4}.
2. (15 points) Does the following integral converge or diverge? Show all work.
(a) $\int_{-\infty}^{\infty} \frac{x d x}{\left(x^{2}+9\right)^{3 / 2}}$
3. Below are six infinite series,
(a) (2 points each) For five (5) of the six, state a reasonable test for checking for convergence or divergence and include a short sentence as to why that test is reasonable.
(b) (10 points each) Choose three (3) of the series and determine if they converge or diverge. Show all details.
i. $\sum_{n=1}^{\infty} \frac{6^{n}+1}{7^{n}}$
ii. $\sum_{n=1}^{\infty} \frac{7^{n}}{6^{n}+1}$
iii. $\sum_{n=1}^{\infty} \frac{[\ln (n)]^{3}}{n}$
iv. $\sum_{n=2}^{\infty} \frac{6 n^{3}-10 n^{2}+1000 n}{n^{6}-1}$
v. $\sum_{n=1}^{\infty}\left(\frac{n-4}{n}\right)^{n}$
vi. $\sum_{n=1}^{\infty} \frac{n!}{(2 n)!}$ [Be careful with the factorials.]
4. (15 points) Determine if the following series converges or diverges. If it converges, determine if the convergence is absolute or conditional.
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n)}{n^{3}}$
5. (10 points) Prove the following theorem.

If $\sum_{n=1}^{\infty} a_{n}$ is a convergent series of nonnegative numbers, then $\sum_{n=1}^{\infty} \frac{a_{n}}{n}$ also converges.

