September 19, 2006
Name

Technology used:

- Be sure to include in-line citations every time you use technology.
- Include a careful sketch of any graph obtained by technology in solving a problem.
- Only write on one side of each page.

Do any six (6) of the following problems

1. (15 points) Use the definition of definite integrals as the limit of Riemann sums and the Useful Facts below to compute

$$
\int_{0}^{2}\left(12 x^{2}+2 x\right) d x
$$

[No credit for using the Fundamental Theorem of Calculus]
2. (15 points) Do any two (2) of the following
(a) Use the definition (see Useful Facts below) to compute the discrete derivative of the following sequence $b(n)=(n+2) 5^{n}$. (Use algebra to factor your answer.)
(b) Explain why

$$
\sum_{k=1}^{n}\left(k^{7}+2 k\right)=\sum_{j=4}^{n+3}\left((j-3)^{7}+2 j-6\right)
$$

(c) Express the following limit as a definite integral where P is a partition of the interval $\left[0, \frac{\pi}{3}\right]$

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n}\left(\tan \left(c_{k}\right) \Delta x_{k}\right)
$$

3. (8,7 points) Evaluate the following indefinite integrals.
(a)

$$
\int\left(2 e^{x}+\frac{3}{x}+4 \sec ^{2}(x)-5 \cos (x)\right) d x
$$

(b)

$$
\int \frac{1}{u^{4}}\left(\frac{2}{u}-\frac{7}{u^{3}}+\sqrt[3]{u}\right) d u
$$

4. (5 points each) Do all of the following
(a) What is the average value of the function $f(x)=x^{5}-7 x^{2}+2$ on the interval $[2,6]$? [Do not use a Riemann Sum]
(b) Given the function $f(x)=x^{3}+1$ with domain the interval [0,4]. Write a Riemann sum for f using a partition P that divides $[0,4]$ into 3 subintervals and where $\|P\|=2$. Be sure to specify P as well as writing out the three terms in the Riemann Sum.
(c) Suppose that f and g are integrable functions and that $\int_{a}^{b}(2 f(x)+g(x)) d x=5$ and $\int_{a}^{b}(f(x)-g(x)) d x=$ 7. Use properties of definite integrals to find $\int_{a}^{b} f(x) d x$ and $\int_{a}^{b} g(x) d x$. Show your work.
5. (8,7 points) Do both of the following
(a) Find the derivative of

$$
y=\int_{e^{x}}^{2} \tan ^{2}(t) d t
$$

(b) Find the derivative of

$$
y=\int_{x}^{x^{2}} \frac{1}{t} d t
$$

6. (15 points) Use substitution to evaluate any two (2) of the following indefinite integrals
(a)

$$
\int \frac{1}{\theta^{2}} \sin \left(\frac{1}{\theta}\right) \cos \left(\frac{1}{\theta}\right) d \theta
$$

(b)

$$
\int \frac{\left(\sin ^{-1} x\right)^{2}}{\sqrt{1-x^{2}}} d x
$$

(c)

$$
\int \frac{d x}{x \sqrt{x^{4}-1}}
$$

7. (15 points) The following is a list of the first few terms of a sequence $a(n)$ with domain $n=0,1,2, \cdots$. Determine the formula for $a(n)$.

$$
2,1,6,17,34,57,86,121,162,209,262, \cdots
$$

[Hint: If $b(n)$ has terms $2,5,8,11,14,17,20, \cdots$, then the first few terms of the discrete derivative of $b(n)$ would be $(5-2),(8-5),(11-8),(14-11),(17-14),(20-17), \cdots$. But this is easily seen to be $3,3,3,3,3,3, \cdots$. So Hence $D_{n}[b(n)]=c(n)=3$.]

Useful Facts

1.

$$
\begin{aligned}
\sum_{k=1}^{n} 1 & =n & \sum_{k=1}^{n} k & =\frac{n(n+1)}{2} \\
\sum_{k=1}^{n} k^{2} & =\frac{n(n+1)(2 n+1)}{6} & \sum_{k=1}^{n} k^{3} & =\frac{n^{2}(n+1)^{2}}{4}
\end{aligned}
$$

- $D_{n}[a(n)]=a(n+1)-a(n)$
- $n^{\underline{p}}=n(n-1)(n-2) \cdots(n-p+1)$
- $D_{n}[n \underline{\underline{p}}]=p n \underline{\underline{p-1}}$ and If $a(n)=n^{\underline{p}}$, then $A(n)=\frac{1}{p+1} n \underline{\underline{p+1}}+C$
- $D_{n}\left[r^{n}\right]=(r-1) r^{n}$ and if $a(n)=r^{n}$ then $A(n)=\frac{1}{r-1} r^{n}+C$
- $\sum_{k=m}^{n} a(k)=A(n+1)-A(m)$

