November 14, 2006
Name

Technology used: Directions:

- Be sure to include in-line citations every time you use technology.
- Include a careful sketch of any graph obtained by technology in solving a problem.
- Only write on one side of each page.
- When given a choice, specify which problem(s) you wish graded.

Do any six (6) of the following problems

1. (15 points) Use the error bound formula for the Trapezoid Rule, $\left|E_{T}\right| \leq \frac{M(b-a)^{3}}{12 n^{2}}$ to estimate the minimum number of subintervals needed to approximate the integral $\int_{0}^{2} \sqrt{x+1} d x$ with an error of magnitude less than 10^{-4}.
(a) $f(x)=(x+1)^{1 / 2}$, so $f^{\prime}(x)=\frac{1}{2}(x+1)^{-1 / 2}, f^{\prime \prime}=-\frac{1}{4}(x+1)^{-3 / 2}$ and $\left|f^{\prime \prime}(x)\right|=\frac{1}{4} \frac{1}{|x+1|^{3 / 2}}$. This last function has a decreasing graph on the interval $[0,2]$ so $\left|f^{\prime \prime}(x)\right| \leq\left|f^{\prime \prime}(0)\right|=\frac{1}{4}$ which we use for M.
We want n so that $\frac{\frac{1}{4}(2-0)^{3}}{12 n^{2}} \leq 10^{-4}$ which is equivalent to $\frac{\frac{1}{4}(2-0)^{3}}{12} 10^{4} \leq n^{2}$ and taking square roots we have $40.824 \leq n$ so we use $n=41$.
2. (15 points) Does the following integral coverge or diverge? Show all work.

$$
\int_{-\infty}^{\infty} \frac{x d x}{\left(x^{2}+9\right)^{3 / 2}}
$$

(a) Using the substitution $u=x^{2}+9$ we see that $\int \frac{x d x}{\left(x^{2}+9\right)^{3 / 2}}=\frac{-1}{\left(x^{2}+9\right)^{1 / 2}}+C$
$\int_{-\infty}^{\infty} \frac{x d x}{\left(x^{2}+9\right)^{3 / 2}}=\int_{-\infty}^{0} \frac{x d x}{\left(x^{2}+9\right)^{3 / 2}}+\int_{0}^{\infty} \frac{x d x}{\left(x^{2}+9\right)^{3 / 2}}=\lim _{a \rightarrow-\infty} \int_{a}^{0} \frac{x d x}{\left(x^{2}+9\right)^{3 / 2}}+\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{x d x}{\left(x^{2}+9\right)^{3 / 2}}=$
$\lim _{a \rightarrow-\infty}\left[\frac{-1}{\left(x^{2}+9\right)^{1 / 2}}\right]_{a}^{0}+\lim _{b \rightarrow \infty}\left[\frac{-1}{\left(x^{2}+9\right)^{1 / 2}}\right]_{0}^{b}$
$=\lim _{a \rightarrow-\infty}\left[\frac{-1}{\left(0^{2}+9\right)^{1 / 2}}-\frac{-1}{\left(a^{2}+9\right)^{1 / 2}}\right]+\lim _{b \rightarrow \infty}\left[\frac{-1}{\left(b^{2}+9\right)^{1 / 2}}-\frac{-1}{\left(0^{2}+9\right)^{1 / 2}}\right]=\left[\frac{-1}{3}-0\right]+\left[0-\frac{-1}{3}\right]$. And since both improper integrals converge the original integral converges to 0 .
3. Below are six infinite series,
(a) (2 points each) For five (5) of the six, state a reasonable test for checking for convergence or divergence and include a short sentence as to why that test is reasonable.
(b) (10 points each) Choose three (3) of the series and determine if they converge or diverge. Show all details.
i. Ratio or Root test or write as a sum of geometric series : $\sum_{n=1}^{\infty} \frac{6^{n}+1}{7^{n}}$
A. $\sum_{n=1}^{\infty} \frac{6^{n}+1}{7^{n}}=\sum_{n=1}^{\infty}\left(\frac{6}{7}\right)^{n}+\sum_{n=1}^{\infty}\left(\frac{1}{7}\right)^{n}$ both of which converge as geometric series.
ii. Ratio or Root Test or nth term test: $\sum_{n=1}^{\infty} \frac{7^{n}}{6^{n}+1}$
A. $\lim _{n \rightarrow \infty} \frac{7^{n}}{6^{n}+1}=\lim _{n \rightarrow \infty} \frac{(7 / 6)^{n}}{1+\left(\frac{1}{6}\right)^{n}}=\infty$ so the series diverges by the nth term test.
iii. Direct comparison to the harmonic series or integral test: $\sum_{n=1}^{\infty} \frac{[\ln (n)]^{3}}{n}$
A. $\frac{1}{n} \leq \frac{[\ln (n)]^{3}}{n}$ for all n larger than 1 so by direct comparison with the divergent harmonic series, the series $\sum_{n=1}^{\infty} \frac{[\ln (n)]^{3}}{n}$ diverges.
iv. LImit comparison to $\sum \frac{1}{n^{3}}: \sum_{n=2}^{\infty} \frac{6 n^{3}-10 n^{2}+1000 n}{n^{6}-1}$
A. $\lim _{n \rightarrow \infty} \frac{6 n^{3}-10 n^{2}+1000 n}{n^{6}-1} \cdot \frac{n^{3}}{1}=\lim _{n \rightarrow \infty} \frac{6-\frac{10}{n}+\frac{1000}{n^{2}}}{1-\frac{1}{n^{6}}}=6$ so by limit comparison to the converging series $\sum \frac{1}{n^{3}}$ the series $\sum_{n=2}^{\infty} \frac{6 n^{3}-10 n^{2}+1000 n}{n^{6}-1}$ also converges.
v. Root test is reasonable but won't work. nth term test works: $\sum_{n=1}^{\infty}\left(\frac{n-4}{n}\right)^{n}$
A. $\lim _{n \rightarrow \infty}\left(\frac{n-4}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{-4}{n}\right)^{n}=e^{-4}$ (See section 8.2). So this series diverges by the nth term test.
vi. Ration Test: $\sum_{n=1}^{\infty} \frac{n!}{(2 n)!}$ [Be careful with the factorials.]
A. Using the ratio test, $\lim _{n \rightarrow \infty} \frac{(n+1)!}{(2 n+2)!} \cdot \frac{(2 n)!}{(n+1)!}=\lim _{n \rightarrow \infty} \frac{(n+1)}{(2 n+2)(2 n+1)}=\lim _{n \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{1}{2(2 n+1)}=$ 0 . So by the ratio test, this series converges.
4. (15 points) Determine if the following series converges or diverges. If it converges, determine if the convergence is absolute or conditional.

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n)}{n^{3}}
$$

(a) The absolute value series is $\sum_{n=1}^{\infty} \frac{|\sin (n)|}{n^{3}}$ and $\frac{|\sin (n)|}{n^{3}} \leq \frac{1}{n^{3}}$ for all n so $\sum_{n=1}^{\infty} \frac{|\sin (n)|}{n^{3}}$ converges by direct comparison to $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ and then $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n)}{n^{3}}$ converges absolutely by the Absolute Convergence Test.
5. (10 points) Prove the following theorem.

If $\sum_{n=1}^{\infty} a_{n}$ is a convergent series of nonnegative numbers, then $\sum_{n=1}^{\infty} \frac{a_{n}}{n}$ also converges.
(a) Since $\frac{a_{n}}{n} \leq a_{n}$ for all positive integers n and $\sum_{n=1}^{\infty} a_{n}$ is a convergent series of nonnegative numbers then $\sum_{n=1}^{\infty} \frac{a_{n}}{n}$ converges by direct comparison with $\sum_{n=1}^{\infty} a_{n}$.

