October 3, 2006

Fall 2006

Directions:

Exam 2

Name

Technology used:

- Be sure to include in-line citations every time you use technology.
- Include a careful sketch of any graph obtained by technology in solving a problem.
- Only write on one side of each page.
- When given a choice, specify which problem(s) you wish graded.

The Problems

- 1. (15 points) Do **one** (1) of the following.
 - (a) Find the area of the region bounded by the graphs of $x = y^2$ and $x = -2y^2 + 3$.
 - i. Solving $y^2 = -2y^2 + 3$ we see the graphs intersect when y = -1 and y = +1 (the points (1, -1) and (1, 1)).
 - ii. Using horizontal rectangles the area is $\int_{-1}^{1} \left[(-2y^2 + 3) y^2 \right] dy = \int_{-1}^{1} \left[-3y^2 + 3 \right] dy = -y^3 + 3y \Big]_{-1}^{1} = 4$
 - (b) Find the area of the region in the first quadrant enclosed by the curves $y = \cos\left(\frac{\pi x}{2}\right)$ and $y = 1 x^2$.
 - i. Graphing we see there are only two points of intersection (0,0) and (1,1) and that the parabola graphs above the trigonometric function.
 - ii. So the area is $\int_0^1 (1-x^2) dx \int_0^1 \cos\left(\frac{\pi x}{2}\right) dx$
 - iii. The first inegral is $x \frac{1}{3}x^3\Big|_0^1 = \frac{2}{3}$
 - iv. For the second integral we use a substitution: $u = \frac{\pi}{2}x$ so that $du = \frac{\pi}{2}dx$ and $dx = \frac{2}{\pi}du$. In addition, x = 0 gives u = 0 and x = 1 gives $u = \frac{\pi}{2}$.
 - v. The second integral is now $\frac{2}{\pi} \int_0^{\frac{\pi}{2}} \cos(u) \, du = \frac{2}{\pi} \sin(u) \Big|_0^{\frac{\pi}{2}} = \frac{2}{\pi}$
 - vi. The total area is the difference of the two integrals $A = \frac{2}{3} \frac{2}{\pi}$
- 2. (15 points) Do one (1) of the following.
 - (a) Evaluate

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{2\cos\left(\theta\right) \, d\theta}{1 + \left(\sin\left(\theta\right)\right)^2}$$

i. Using the substitution $u = \sin(\theta)$ we have $du = \cos(\theta) d\theta$ and new limits of integration u = -1 and u = 1.

ii.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{2\cos(\theta) \, d\theta}{1 + (\sin(\theta))^2} = 2 \int_{-1}^{1} \frac{du}{1 + u^2} = 2 \arctan(u) \Big]_{-1}^{1} = 2 \left(\frac{\pi}{4}\right) - 2 \left(-\frac{\pi}{4}\right) = \pi$$

(b) Solve the initial value problem $\frac{ds}{dt} = 8\sin^2\left(t + \frac{\pi}{12}\right)$, s(0) = 8.

- i. We need a function whose derivative is $8\sin^2(t+\frac{\pi}{12})$ and whose output is 8 when we input 0.
- ii. We use a substitution to find an antiderivative of $8\sin^2\left(t+\frac{\pi}{12}\right)$: $u = t + \frac{\pi}{12}$ so du = dt.

iii.
$$\int 8\sin^2\left(t + \frac{\pi}{12}\right) dt = 8 \int \sin^2\left(u\right) du = 8 \left\lfloor \frac{u}{2} - \sin\left(\frac{2u}{4}\right) \right\rfloor + C$$
 so our function looks like
iv. $s\left(t\right) = 8 \left\lfloor \frac{t + \frac{\pi}{12}}{2} - \frac{\sin\left(2\left(t + \frac{\pi}{12}\right)\right)}{4} \right\rfloor + C$.
v. Plugging in $8 = s\left(0\right) = 8 \left[0 - \frac{\sin(\pi/6)}{4}\right] = -1$ we obtain
vi. $s\left(t\right) = 8 \left\lfloor \frac{t + \frac{\pi}{12}}{2} - \frac{\sin\left(2\left(t + \frac{\pi}{12}\right)\right)}{4} \right\rfloor - 1 = \left\lfloor 4t + \frac{1}{3}\pi - 2\sin\left(2t + \frac{1}{6}\pi\right) \right\rfloor - 1$

- 3. (15 points) The base of a solid is the region in the xy-plane bounded by the graphs of the parabolas $y = 2x^2$ and $y = 5 3x^2$. Find the volume of the solid given that cross sections perpendicular to the x-axis are squares.
 - (a) Solving $2x^2 = 5 3x^2$ we get x = -1 and x = 1.
 - (b) $A(x) = (5 3x^2 2x^2)^2 = (5 5x^2)^2 = 25 50x^2 + 25x^4$

(c)
$$V = \int_{-1}^{1} A(x) dx = \int_{-1}^{1} \left(25 - 50x^2 + 25x^4 \right) dx = 25x - \frac{50}{3}x^3 + 5x^5 \Big]_{-1}^{1} = \frac{80}{3}$$

- 4. (15 points) Do both of the following. Use the Method of Slicing on one and the Method of Cylindrical Shells on the other.
 - (a) Set up, but **do not evaluate** a definite integral for the volume of the solid obtained when the region bounded by the graphs of the curves $y = \sqrt{2x}$ and y = x is rotated about the line y = -1.
 - i. The two curves intersect when $\sqrt{2x} = x$ or $2x = x^2$ or x = 0, 2. So the points of intersection are (0,0) and (2,2). Solving for x the two equations tell us: $x = \frac{1}{2}y^2$ and x = y

- ii. Slicing: The cross-sections are washers with large radius $R = 1 + \sqrt{2x}$ and small radius r = 1 + x so the cross-sectional area function is $A(x) = \pi \left(1 + \sqrt{2x}\right)^2 \pi (1 + x)^2$. The volume is $V = \int_0^2 \left[\pi \left(1 + \sqrt{2x}\right)^2 \pi (1 + x)^2\right] dx$
- iii. Cylindrical Shells: The shell radius is 1+y and the shell height is $y \frac{1}{2}y^2$. So the volume is $V = 2\pi \int_0^2 \left[(1+y) \left(y \frac{1}{2}y^2 \right) \right] dy$.
- (b) Set up, but **do not evaluate** a definite integral for the volume of the solid obtained when the region bounded by the graphs of the curves $y = \sqrt{2x}$ and y = x is rotated about the line x = -1.
 - i. The two curves intersect when $\sqrt{2x} = x$ or $2x = x^2$ or x = 0, 2. So the points of intersection are (0,0) and (2,2). Solving for x the two equations tell us: $x = \frac{1}{2}y^2$ and x = y.
 - ii. Slicing: The cross-sections are washers with large radius 1 + y and small radius $1 + \frac{1}{2}y^2$. So the volume is $V = \int_0^2 \pi (1+y)^2 - \pi \left(1 + \frac{1}{2}y^2\right)^2 dy$

- iii. Cylindrical Shells: The shell radius is (1 + x) and the shell height is $\left(\sqrt{2x} x\right)$. So the volume is $V = 2\pi \int_0^2 \left[(1 + x) \left(\sqrt{2x} x\right) \right] dx$.
- 5. (15 points) Find the total length of the graph of $f(x) = 1/3x^{3/2} x^{1/2}$ from x = 1, to x = 4. [Hint: Δs is a perfect square.]

(a)
$$f'(x) = \frac{1}{2}x^{1/2} - \frac{1}{2}x^{-1/2}$$
 so $\sqrt{1 + [f'(x)]^2} = \sqrt{1 + (\frac{1}{2}x^{1/2} - \frac{1}{2}x^{-1/2})^2} = \sqrt{1 + \frac{1}{4}x - \frac{1}{2} + \frac{1}{4x}} = \sqrt{(\frac{1}{2}x^{1/2} + \frac{1}{2}x^{-1/2})^2} = |\frac{1}{2}x^{1/2} + \frac{1}{2}x^{-1/2}| = \frac{1}{2}x^{1/2} + \frac{1}{2}x^{-1/2}$ because they term inside the absolute values is always positive for $1 \le x \le 4$.

- (b) Thus the length of the curve is $L = \int_1^4 ds = \int_1^4 \sqrt{1 + [f'(x)]^2} \, dx = \int_1^4 \left(\frac{1}{2}x^{1/2} + \frac{1}{2}x^{-1/2}\right) \, dx = \frac{1}{3}x^{3/2} + x^{1/2}\Big]_1^4 = \frac{10}{3}$
- 6. (10 points each) Do any ${\bf two}$ of the following.
 - (a) Suppose that F(x) is an antiderivative of $f(x) = \frac{\sin(x)}{x}$, x > 0. Express

$$\int_{1}^{3} \frac{\sin\left(2x\right)}{x} \, dx$$

in terms of F.

- i. By the first part of the Fundamental Theorem of Calculus, $F'(x) = \frac{\sin(x)}{x}$ for any x > 0.
- ii. We make a substitution to $\int_{1}^{3} \frac{\sin(2x)}{x} dx$ as follows: u = 2x, so $x = \frac{1}{2}u$ and $dx = \frac{1}{2}du$. iii. So $\int_{1}^{3} \frac{\sin(2x)}{x} dx = \int_{2}^{6} \frac{\sin(u)}{\frac{1}{2}u} \left(\frac{1}{2} du\right) = \int_{2}^{6} \frac{\sin(u)}{u} du = F(x)]_{2}^{6} = F(6) - F(2).$
- (b) The disk enclosed by the circle $x^2 + y^2 = 4$ is revolved about the y axis to generate a solid ball. A hole of diameter 2 (radius 1) is then bored through the ball along the y -axis. Set up, but do not evaluate, definite integral(s) that give the remaining volume of this "cored" solid ball.
 - i. Slicing Method: The cross-sections perpendicular to the *y*-axis are washers with large radius $R = \sqrt{4 y^2}$ and small radius 1. The hole touches the circle $x^2 + y^2 = 4$ at the point $(1, \sqrt{3})$.

$$V = \int_{-\sqrt{3}}^{\sqrt{3}} \left[\pi \left(\sqrt{4 - y^2} \right)^2 - \pi \left(1 \right)^2 \right] dy$$

- ii. Cylindrical Shells: The shell radius is x and the shell height is $2\sqrt{4-x^2}$. $V = 2\pi \int_1^2 x \left(2\sqrt{4-x^2}\right) dx.$
- (c) A solid is generated by rotating about the x axis the region in the first quadrant between the the x axis and the curve y = f(x). The function f has the property that the volume, V(x), generated by the part of the region above the interval [0, x] is x^2 for every x > 0. Find the function f(x).
 - i. $V(x) = \int_0^x \pi [f(t)]^2 dt = x^2$. Taking derivatives (using the FTC) we have $V'(x) = \pi [f(x)]^2 = 2x$. Solving for f(x) gives us $f(x) = \sqrt{\frac{2x}{\pi}}$
- (d) Find the volume of the following "twisted solid". A square of side length s lies in a plane perpendicular to line L. One vertex of the square lies on L. As this vertex moves a distance h along L, the square turns one revolution about L. Find the volume of the solid generated by this motion. Briefly explain your answer.

- i. By Cavalieri's principle the volume depends only on the cross sections perpendicular to the axis. Since these are all squares of area $A(x) = s^2$ then, by the method of slicing, the total volume is $V = \int_0^h s^2 dx = s^2 x \Big]_0^h = s^2 h$.
- (e) A solid sphere of radius R centered at the origin can be thought of as a nested collection of thin spherical shells.
 - i. Set up a Riemann sum approximating the volume of this solid sphere by adding up the volumes of the thin, nested spherical shells. [Use the fact that a spherical shell of radius x has surface area of $4\pi x^2$.]
 - A. Subdivide the interval [0, R] into n subintervals using the partition $P = \{x_0, x_1, x_2, \dots, x_n\}$
 - B. For k = 1 to n select a point c_k in the k'th subinterval.
 - C. The volume of the nested spherical shell with radius c_k is approximately equal to the surface area of the shell times the width of the k'th subinterval. Specifically, the volume of the single shell is about $4\pi (c_k)^2 \Delta x_k$
 - D. The associated Riemann Sum that approximates the total volume is

$$\sum_{k=1}^{n} 4\pi \left(c_k\right)^2 \Delta x_k$$

- ii. Write the definite integral that is equal to the limit (as $||P|| \to 0$) of this Riemann Sum.
 - A. Since the function $f(x) = 4\pi x^2$ is continuous everywhere we know the limit of the Riemann Sum exists and is equal to the definite integral $\int_0^R 4\pi x^2 dx$.
- iii. You may **not** use either the Method of Slicing or the Method of Cylindrical Shells.