Conceptual Review

5.1-5.4, 8.1 and bits of 8.2

Interval and Discrete Domain Analogies
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Mixing Interval and Discrete Domain Functions, Part 1

Approximating areas under, average value of, or other properties of interval domain

functions

e Start with a continuous function on an interval [a, b] .

e Partition the interval into n subintervals (which need not be the same size) using P =

{a = zg, 21, -, 2, = b}.

e Use notation: [xy_1, x| is the kth subinterval, Azy is the length of [z4_1, zx], and || P]| is the

length of the longest subinterval

e Select one point ¢, in the k th subinterval for K =1,2,---,n

e Form the sequence a (k) = f (c;) Axy,

e Form the finite sum (discrete antiderivative) Y>-7_, f (cx) Axy

e Determine the limit limp|—oo >j—; f (cx) Ay (By a theorem proven in advanced calculus,
MATH 321, the limit is guaranteed to exist if f is continuous and the limit does not depend
on which partitions P you use or on how you select points ¢, in the subintervals ).

e This limit gives an exact value, not an approximation, and is abbreviated with the notation

Ja f (2) de



Fundamental Theorem of Calculus

e Part 1 of the Fundamental Theorem of Calculus tells us that every continuous function is
guaranteed to have an antiderivative. Specifically, [ f (¢) dt is an antiderivative of f (x).

e Part 2 of the Fundamental Theorem of Calculus gives us a computational shortcut for com-
puting the limit: limyp|—oc > f—; f (c&) Azy. It requires that we know an antiderivative F' (x)

of f(x), but if we do, then [ f (z) = limyp| o Spy f (cr) Azy = F (b) — F (a).



