Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"Personally, I'm always ready to learn, although I do not always like being taught." - Winston Churchill

Problems

1. Let S be any set and denotethe group of permutations on S by $\operatorname{Perm}(S)$. Prove that there is a one-to-one and onto function $\psi: S \rightarrow \operatorname{Perm}(S)$ given by the rule $\psi(g)=m_{g}$. Here $m_{g}(s)=g s$ for all $s \in S$.
2. Prove that a homomorphism $\psi: G \rightarrow \operatorname{Perm}(S)$ (where S is a fixed set and G is a group) is injective if and only if the group action of G on S satisfies the following property: If $g s=s$ for every $s \in G$, then $g=e$.
3. Prove that the group $G L\left(2, \mathbf{F}_{2}\right)$ of invertible matrices with $\bmod 2$ coefficients is isomorphic to the symmetric group S^{3}.
4. Let G be the group of rotational symmetries of a cube C. Two regular tetrahedra Δ and Δ^{\prime} can be inscribed in C, each using half of the vertices. What is the order of the stabilizer of Δ ?
5. Do one of the following.
(a) Prove the formula $|G|=|Z(G)|+\sum|C|$ where the sum is over the conjugacy classes containing more than one element and $Z(G)$ is the center of G.
(b) Rule out as many of the following as possible as Class Equations for a group of order 10.
i. $1+1+1+2+5$
ii. $1+2+2+5$
iii. $1+2+3+4$
iv. $1+1+2+2+2+2$
6. Let $Z(G)$ be the center of a group G. Prove that if G / Z is a cyclic group, then G is abelian and hence $G=Z(G)$.

Problems from Turn In Set 09 - Many that weren't used.

1. (A useful result for later) Suppose p is a prime integer, G is a group, $x \in G$ is an element of order p and $y \in G$ is an element of order p but $y \notin\left\langle x \mid x^{p}=e\right\rangle$. Prove or disprove: $\left\langle x \mid x^{p}=e\right\rangle \cap\left\langle y \mid y^{p}=e\right\rangle=\{e\}$.
2. (This problem generalizes our proof that the center of a p-group has order greater than 1.) Let G be a p - group and let S be a finite set on which G acts. Assume the order of S is not divisible by p.Then there is a fixed point for the action of G on S. That is, there is an element $s \in S$ whose stabilizer is the whole group.
3. Prove:
(a) No group of order $p^{2} q$, where p and q are prime, is simple.
(b) No group of order 224 is simple.
4. Let G be a group of order $p^{l} m$. Our textbook (Gallian) contains an argument that G contains a subgroup of order p^{r} for every integer $1 \leq r \leq l$. Finish this argument by proving exercise 45 in chapter 10 of Gallian. That is, Let N be a normal subgroup of a group G. Use property 7 of Theorem 10.2 to prove every subgroup of G / N has the form H / N where H is a subgroup of G.
5. Do a., b., or c. of the following.
(a) Let H_{1}, \cdots, H_{k} be a complete list of all p - Sylow subgroups of a finite group G. Prove $H=$ $\cap_{i=1}^{k} H_{i}$ is a normal subgroup of G.
(b) Prove the only simple groups of order less than 60 are groups of prime order.
(c) Classify all groups of order 18 .
6. Do any of the three choices in problem 5 that you didn't do for problem 5.
7. Let G be the group of rotational symmetries of a cube C. Two regular tetrahedra Δ and Δ^{\prime} can be inscribed in C, each using half of the vertices. What is the order of the stabilizer of Δ ?
8. Rule out as many of the following as possible as Class Equations for a group of order 10.
(a) i. $1+1+1+2+5$
ii. $1+2+2+5$
iii. $1+2+3+4$
iv. $1+1+2+2+2+2$
9. (This is a theorem in Gallian: don't assign as a problem).

Let $Z(G)$ be the center of a group G. Prove that if G / Z is a cyclic group, then G is abelian and hence $G=Z(G)$.
10. Let X be a path-connected topological space, x_{0} a fixed point of X from which all loops start and stop and $\pi\left(X . x_{0}\right)$ the equivalence classes of loops outlined in class for the fundamental group. Use a homotopy to show the products of equivalence classes of loops are associative. That is, show $(f * g) * h$ is homotopic to $f *(g * h)$.

