November 17, 2006

First Turn In no later than November 29

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"Iron rusts from disuse; stagnant water loses its purity and in cold weather becomes frozen; even so does inaction sap the vigor of the mind." - Leonardo da Vinci

Problems

1. Do one of the following.
(a) Let $G=D_{4}$ be the dihedral group of symmetries of the square.
i. What is the stabilizer of a vertex? Of an edge?
ii. G acts on the set of two elements consisting of the diagonal lines. What is the stabilizer of a diagonal?
(b) Let $G=G L(n, R)$ operate on the set $S=R^{n}$ by left multiplication.
i. Describe the decomposition of S into orbits for this operation.
ii. What is the stabilizer of e_{1} ?
2. Do one of the following.
(a) Let G be a group and let H be the cyclic subgroup generated by an element x of G. Show that if left multiplication by x fixes every coset of H in G, then H is a normal subgroup of G.
(b) A map $\phi: S \rightarrow S^{\prime}$ of G - sets is called a homomorphism of G - sets if $\phi(g s)=g \phi(s)$ for all $s \in S$ and all $g \in G$. Let ϕ be such a homomorphism. Prove the following.
i. The stabilizer $G_{\phi(s)}$ contains the stabilizer G_{s}.
ii. The orbit of an element $s \in S$ maps onto the orbit of $\phi(s)$.
3. Let G be the group of rotational symmetries of a cube C. Two regular tetrahedra Δ and Δ^{\prime} can be inscribed in C, each using half of the vertices. What is the order of the stabilizer of Δ ?
