September 26, 2006

Exam 1

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

- 1. (10, 10 points)
 - (a) Use one of the principles of mathematical induction to prove if a, b, c are elements in a group G for which $b = cac^{-1}$, then $b^n = ca^n c^{-1}$ is true for all positive integers n.
 - i. If n = 1 then $b^1 = ca^1c^{-1}$ is given.
 - ii. Assume the formula holds for n = k.
 - iii. Then $b^{k+1} = b^k b = (ca^k c^{-1})(cac^{-1}) = ca^k ac^{-1} = ca^{k+1}c^{-1}$ So the formula holds for every positive integer by weak induction.

- (b) Prove that $b^n = ca^n c^{-1}$ is also true for all **negative** integers *n*.
 - i. Note that $b^{-n} = (b^n)^{-1} = (ca^n c^{-1})^{-1} = ca^{-n} c^{-1}$ so the formula holds for negative integers. (It holds for n = 0 trivially.)

(c) Prove that if $\phi: G \to H$ is a group homomorphism then $\phi(a^{-1}) = (\phi(a))^{-1}$ for every $a \in G$

- i. $e' = \phi(e) = \phi(aa^{-1}) = \phi(a)\phi(a^{-1})$ and $e' = \phi(e) = \phi(a^{-1}a) = \phi(a^{-1})\phi(a)$ so $\phi(a^{-1})$ acts like the inverse of $\phi(a)$. Since inverses are unique $\phi(a^{-1}) = [\phi(a)]^{-1}$
- 2. (10, 10 points) Let G be a group and $\phi: G \to G$ be the map $\phi(x) = x^{-1}$.
 - (a) Prove that ϕ is a bijection
 - i. If $\phi(x) = \phi(y)$ then $x^{-1} = y^{-1}$ so $xx^{-1}y = xy^{-1}y$ which tells us y = x and ϕ is one-to-one. ii. Let y be an element in the codomain, G. Then y^{-1} is in G (the domain) and $\phi(y^{-1}) =$ $(u^{-1})^{-1} = u$ so is onto.
 - (b) Prove that ϕ is an automorphism if and only if G is abelian.
 - i. If G is abelian then $\phi(ab) = (ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} = \phi(a)\phi(b)$ so ϕ respects the group operation.
 - ii. If ϕ is an automorphism, then $a^{-1}b^{-1} = \phi(a)\phi(b) = \phi(ab) = (ab)^{-1} = b^{-1}a^{-1}$. Taking inverses of both ends of this equation yields ba = ab so every pair of elements in G commute and G is abelian.
- 3. (15 points each) Do four (4) of the following problems.
 - (a) Prove that every subgroup of a cyclic group is cyclic.

i. In the text and in class notes.

(b) Prove that a group in which every element except the identity has order 2 is abelian.

i. For any elements a, b in $G, ab = ab(ba)^2 = abbaba = ab^2aba = a^2ba = ba$.

- (c) Find all automorphisms of the group (Z, +) of integers under the operation of addition. [Recall that every subgroup of (Z, +) has the form bZ.]
 - i. Let ϕ be an automorphism of the group G = (Z, +). Then 1 maps to an integer, say m. And since ϕ is onto, there is an integer m that maps to 1.
 - ii. Thus, $1 = \phi(m) = m\phi(1) = nm$.
 - iii. Since both n, m are integers they are either both 1 or both -1.
 - iv. So $\phi(n) = n$ and $\psi(n) = -n$ are the only possible automorphisms.
 - v. It is now easy to check they are both automorphisms.
- (d) (15 points) Let ϕ, ψ be two homomorphisms from a group G to another group G' and let $H \subset G$ be the subset of G given by $H = \{x \in G : \phi(x) = \psi(x)\}$. Prove or disprove, H is a subgroup of G.
 - i. Let a, b be elements in H. Then $\phi(ab) = \phi(a) \phi(b) = \psi(a) \psi(b) = \psi(ab)$ so H is closed.
 - ii. Let a be an element of H. Then $\phi(a) = \psi(a)$ tells us $\phi(a^{-1}) = [\phi(a)]^{-1} = [\psi(a)]^{-1} = \psi(a)^{-1}$ so H contains the inverse of each of its elements.
 - iii. Thus H is a subgroup of G.
- (e) Let H be a subgroup of a group G. Prove that the relation defined by the rule $a^{\tilde{}}b$ if and only if $b^{-1}a \in H$ is an equivalence relation on G.
 - i. Since $a^{-1}a = e \in H$, then $a^{\tilde{}}a$
 - ii. If a b then $b^{-1}a \in H$ and taking inverses, $(b^{-1}a)^{-1} = a^{-1}b \in H$ so b a
 - iii. If $a^{\tilde{}}b$ and $b^{\tilde{}}c$ then $b^{-1}a$, $c^{-1}b \in H$ so $(c^{-1}b)(b^{-1}a) = c^{-1}a \in H$ and $a^{\tilde{}}c$.
- (f) The orders of the elements in U(20) and U(24) are given in the tables below. Prove that these two groups are not isomorphic by proving that if $\phi: G \to H$ is an isomorphism, then the order of a must equal the order of $\phi(a)$, $|a| = |\phi(a)|$.

U(20)	1	3	7	9	11	13	17	19
Order	1	4	4	2	2	4	4	2
U(24)	1	5	7	11	13	17	19	23
Order	1	2	2	2	2	2	2	2

- i. Let a be an element of G of order n and denote the order of $\phi(a)$ by m. Then $e = \phi(e) = \phi(a^n) = [\phi(a)]^n$ tells us that m must divide n.
- ii. We know that ϕ^{-1} is also an isomorphism and the order of $\phi(a)$ is some integer, say *m*. Then $e = \phi^{-1}(e) = \phi^{-1}([\phi(a)]^m) = \phi^{-1}(\phi(a))^m = a^m$ which tells us that *n* must divide *m*. The only way two positive integers *m* and *n* can divide each other is if they are equal.
- iii. Note that this proof tells us that either a and $\phi(a)$ both have infinite order or both have finite order.

Definitions you should know.

- 1. The general linear group of order n over the real numbers $GL(n, \mathbf{R})$.
- 2. The center, Z(G), of a group G.
- 3. The **centralizer**, C(a), of an element a in a group G.
- 4. A normal subgroup N of a group G.
- 5. A homomorphism from the group G to the group G'.