September 26, 2006

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. (10,10 points)
(a) Use one of the principles of mathematical induction to prove if a, b, c are elements in a group G for which $b=c a c^{-1}$, then $b^{n}=c a^{n} c^{-1}$ is true for all positive integers n.
i. If $n=1$ then $b^{1}=c a^{1} c^{-1}$ is given.
ii. Assume the formula holds for $n=k$.
iii. Then $b^{k+1}=b^{k} b=\left(c a^{k} c^{-1}\right)\left(c a c^{-1}\right)=c a^{k} a c^{-1}=c a^{k+1} c^{-1}$

So the formula holds for every positive integer by weak induction.
(b) Prove that $b^{n}=c a^{n} c^{-1}$ is also true for all negative integers n.
i. Note that $b^{-n}=\left(b^{n}\right)^{-1}=\left(c a^{n} c^{-1}\right)^{-1}=c a^{-n} c^{-1}$ so the formula holds for negative integers. (It holds for $n=0$ trivially.)
(c) Prove that if $\phi: G \rightarrow H$ is a group homomorphism then $\phi\left(a^{-1}\right)=(\phi(a))^{-1}$ for every $a \in G$
i. $e^{\prime}=\phi(e)=\phi\left(a a^{-1}\right)=\phi(a) \phi\left(a^{-1}\right)$ and $e^{\prime}=\phi(e)=\phi\left(a^{-1} a\right)=\phi\left(a^{-1}\right) \phi(a)$ so $\phi\left(a^{-1}\right)$ acts like the inverse of $\phi(a)$. Since inverses are unique $\phi\left(a^{-1}\right)=[\phi(a)]^{-1}$
2. (10,10 points) Let G be a group and $\phi: G \rightarrow G$ be the map $\phi(x)=x^{-1}$.
(a) Prove that ϕ is a bijection
i. If $\phi(x)=\phi(y)$ then $x^{-1}=y^{-1}$ so $x x^{-1} y=x y^{-1} y$ which tells us $y=x$ and ϕ is one-to-one.
ii. Let y be an element in the codomain, G. Then y^{-1} is in G (the domain) and $\phi\left(y^{-1}\right)=$ $\left(y^{-1}\right)^{-1}=y$ so is onto.
(b) Prove that ϕ is an automorphism if and only if G is abelian.
i. If G is abelian then $\phi(a b)=(a b)^{-1}=b^{-1} a^{-1}=a^{-1} b^{-1}=\phi(a) \phi(b)$ so ϕ respects the group operation.
ii. If ϕ is an automorphism, then $a^{-1} b^{-1}=\phi(a) \phi(b)=\phi(a b)=(a b)^{-1}=b^{-1} a^{-1}$. Taking inverses of both ends of this equation yields $b a=a b$ so every pair of elements in G commute and G is abelian.
3. (15 points each) Do four (4) of the following problems.
(a) Prove that every subgroup of a cyclic group is cyclic.
i. In the text and in class notes.
(b) Prove that a group in which every element except the identity has order 2 is abelian.
i. For any elements a, b in $G, a b=a b(b a)^{2}=a b b a b a=a b^{2} a b a=a^{2} b a=b a$.
(c) Find all automorphisms of the group $(Z,+)$ of integers under the operation of addition. [Recall that every subgroup of $(Z,+)$ has the form $b Z$.]
i. Let ϕ be an automorphism of the group $G=(Z,+)$. Then 1 maps to an integer, say m. And since ϕ is onto, there is an integer m that maps to 1 .
ii. Thus, $1=\phi(m)=m \phi(1)=n m$.
iii. Since both n, m are integers they are either both 1 or both -1 .
iv. So $\phi(n)=n$ and $\psi(n)=-n$ are the only possible automorphisms.
v. It is now easy to check they are both automorphisms.
(d) (15 points) Let ϕ, ψ be two homomorphisms from a group G to another group G^{\prime} and let $H \subset G$ be the subset of G given by $H=\{x \in G: \phi(x)=\psi(x)\}$. Prove or disprove, H is a subgroup of G.
i. Let a, b be elements in H. Then $\phi(a b)=\phi(a) \phi(b)=\psi(a) \psi(b)=\psi(a b)$ so H is closed.
ii. Let a be an element of H. Then $\phi(a)=\psi(a)$ tells us $\phi\left(a^{-1}\right)=[\phi(a)]^{-1}=[\psi(a)]^{-1}=$ $\psi\left(a^{-1}\right)$ so H contains the inverse of each of its elements.
iii. Thus H is a subgroup of G.
(e) Let H be a subgroup of a group G. Prove that the relation defined by the rule $a^{\sim} b$ if and only if $b^{-1} a \in H$ is an equivalence relation on G.
i. Since $a^{-1} a=e \in H$, then $a \sim a$
ii. If $a^{\sim} b$ then $b^{-1} a \in H$ and taking inverses, $\left(b^{-1} a\right)^{-1}=a^{-1} b \in H$ so $b^{\sim} a$
iii. If $a^{\sim} b$ and $b^{\sim} c$ then $b^{-1} a, c^{-1} b \in H$ so $\left(c^{-1} b\right)\left(b^{-1} a\right)=c^{-1} a \in H$ and $a \sim c$.
(f) The orders of the elements in $U(20)$ and $U(24)$ are given in the tables below. Prove that these two groups are not isomorphic by proving that if $\phi: G \rightarrow H$ is an isomorphism, then the order of a must equal the order of $\phi(a),|a|=|\phi(a)|$.

$U(20)$	1	3	7	9	11	13	17	19
Order	1	4	4	2	2	4	4	2
$U(24)$	1	5	7	11	13	17	19	23
Order	1	2	2	2	2	2	2	2

i. Let a be an element of G of order n and denote the order of $\phi(a)$ by m. Then $e=\phi(e)=$ $\phi\left(a^{n}\right)=[\phi(a)]^{n}$ tells us that m must divide n.
ii. We know that ϕ^{-1} is also an isomorphism and the order of $\phi(a)$ is some integer, say m.Then $e=\phi^{-1}(e)=\phi^{-1}\left([\phi(a)]^{m}\right)=\phi^{-1}(\phi(a))^{m}=a^{m}$ which tells us that n must divide m. The only way two positive integers m and n can divide each other is if they are equal.
iii. Note that this proof tells us that either a and $\phi(a)$ both have infinite order or both have finite order.

Definitions you should know.

1. The general linear group of order n over the real numbers $G L(n, \mathbf{R})$.
2. The center, $Z(G)$, of a group G.
3. The centralizer, $C(a)$, of an element a in a group G.
4. A normal subgroup N of a group G.
5. A homomorphism from the group G to the group G^{\prime}.
