November 14, 2006

Fall 2006

Exam 2

Name

Directions: Only write on one side of each page.

Do any six (6) of the following

1. Let $K \subset H \subset G$ be subgroups of a **finite** group G. Prove the formula

 $[G:K] = [G:H] \left[H:K \right].$

(a) The basic formla is that |G| = [G:H] |H| for every group G and every subgroup H of G. Thus

$$[G:K] = \frac{|G|}{|K|} = \frac{|G|}{|H|} \frac{|H|}{|K|} = [G:H] [H:K].$$

- 2. Do **both** of the following:
 - (a) If S is a set and G is a group acting on S, prove that the relation

$$s \ \tilde{s}'$$
 if $s' = gs$ for some $g \in G$

is an equivalence relation.

- i. Reflexive: es = s, symmetric: $gs_1 = s_2$ implies $s_1 = g^{-1}s_2$, transitive: $gs_1 = s_2$ and $hs_2 = s_3$ implies $(hg) s_1 = h (gs_1) = s_3$
- (b) Let $\phi : G \to G'$ be a homomorphism, and let S be a set on which G' acts. Use ϕ to define, with proof, a group action of G on S.
 - i. Given the group action g's for the group G' define a group action for the group G by $gs = \phi(g)s = g's$ where $\phi(g) = g'$. Then $es = \phi(e)s = e's = s$ and $g_2(g_1s) = g_2(g'_1s) = \phi(g_2)(g'_1s) = g'_2(g'_1s) = (\phi(g_1)\phi(g_2))s = \phi(g_2g_1)s = (g_2g_1)'s = (g_2g_1)s$.
- 3. Do one of the following
 - (a) Let G be a group containing normal subgroups of orders 3 and 5, respectively. Prove G contains an element of order 15.
 - i. Let H have order 3 and K have order 5. Normality of H and K in G tells us that $hkh^{-1}k^{-1} = (hkh^{-1})k^{-1} = h(kh^{-1}k^{-1})$ is an element in $H \cap K$. But $H \cap K \leq H$ and $H \cap K \leq K$ so $|H \cap K|$ divides both 3 and 5 and so there is only one element, e, in $H \cap K$. Thus, $hkh^{-1}k^{-1} = e$ so hk = kh for every $h \in H$ and $k \in K$. Now let a be the generator of the cyclic group H and k the generator of the cyclic group K. The element ab of G satisfies $(ab)^n = a^n b^n$ and the smallest positive number n for which this yields e must have both 3 and 5 as divisors. Thus n = 15 is the order of the element ab in G.
 - (b) Let H, K be subgroups of a group G. Show the set of products $HK = \{hk : h \in H, k \in K\}$ is a subgroup if and only if HK = KH.

- i. " \rightarrow " If $HK \leq G$
 - A. $kh = (h^{-1}k^{-1})^{-1} \in HK$ by closure of subgroups and $KH \subset HK$.
 - B. KH is closed under inverses since $(kh)^{-1} = h'k' \in HK$ so $hk = (k^{-1}h^{-1})^{-1} \in KH$ and KH = HK
- ii. " \leftarrow " If HK = KH then $(h_1k_1)(h_2k_2)^{-1} = h_1(k_1h_2^{-1})k_2^{-1} = h_1(h_3k_3)k_2 \in HK$ so HK is a subgroup by the 1 step theorem.
- 4. Do one of the following:

When we classified the group M of rigid motions of the plane we claimed the following six relations were all true and proved a few of them.

(a) Add to our certainty by **algebraically** proving either part iv. or part v.

i.
$$t_a t_b = t_{a+b}$$

- ii. $\rho_{\theta}\rho_{\eta} = \rho_{\theta+\eta}$
- iii. rr = i
- iv. $\rho_{\theta} t_a = t_{a'} \rho_{\theta}$, where $a' = \rho_{\theta} (a)$
- v. $rt_a = t_{a'}r$, where a' = r(a)
 - A. Write out $rt_a(x)$ and $t_{a'}r(x)$ using the functions below to see that they are equal for all x.
- vi. $r\rho_{\theta} = \rho_{-\theta}r$.
- (b) Use the above relations to show that if m is an orientation reversing motion of the plane then m^2 is a translation.

$$m^{2} = (t_{a}\rho r) (t_{a}\rho r) = t_{a}\rho t_{a'}r\rho r =$$

$$= t_{a}\rho t_{a'}\rho^{-1}rr = t_{a}\rho t_{a'}\rho^{-1}$$

$$= t_{a}t_{a''}\rho\rho^{-1}$$

$$= t_{a+a''}$$

- (c) Compute the glide vector of the glide $t_{\vec{a}}\rho_{\theta}r$ in terms of \vec{a} and θ .
- 5. Do one of the following:
 - (a) Let G be a group and Aut(G) the group of automorphisms of G. Prove or disprove: The set of inner automorphisms $Inn(G) = \{\phi \in Aut(G) : \phi(g) = xgx^{-1} \text{ for some } x \in G\}$ is a normal subgroup of Aut(G).
 - i. $\phi, \psi \in Inn(G)$ where $\phi(g) = xgx^{-1}$ and $\psi(g) = ygy^{-1}$, then $\phi \circ \psi^{-1}(g) = \phi(y^{-1}gy) = xy^{-1}gyx^{-1} = (xy^{-1})g(xy^{-1})^{-1} \in Inn(G)$ so Inn(G) is a subgroup by the one step test.
 - ii. Let f be an automorphism and $\phi \in Inn(G)$ as above then $f\phi f^{-1}(g) = f(xf^{-1}(g)x^{-1}) = f(x) f(f^{-1}(g)) f(x^{-1}) = (f(x)) g(f(x))^{-1} \in Inn(G)$
 - (b) Let S be a set on which a group G operates. Let $H = \{g \in G : gs = s \text{ for all } s \in S\}$. Prove H is a normal subgroup of G.
 - i. Let $x \in G$ and $h \in H$ then $(xhx^{-1})s = x(h(x^{-1}s)) = x(x^{-1}(s)) = es = s$ so H is normal in G.
- 6. The following patterns represent small portions of two tilings of the infinite plane. Circle one of the following patterns and let G be the group of symmetries of that tiling. Determine the point group of G.

- Figure 1: 1
- (a) See attached image file for the patterns
- (b) #1: If the pattern repeats to cover the plane then the smallest angle of rotation is π and there are horizontal reflections so the point group is D_2 If the pattern is restricted to an infinite horizontal strip then the smallest angle of rotation is 2π and the point group is D_1

 $\mathbf{2}$

- (c) #2: Similarly, for a plane-filling pattern the point group is D_2 and for an infinite strip it is again D_2
- 7. Let G be a group acting on the set S. Let s be a fixed element in S and t an element in the orbit of s, say t = as. Prove the stabilizer of t in G is a conjugate subgroup of the stabilizer of s in G. Specifically, show $G_t = aG_sa^{-1}$.

(a)
$$g \in G_t$$
 iff $gt = t$ iff $g(as) = as$ iff $(a^{-1}ga)s = s$ iff $a^{-1}ga \in G_s$ iff $g = a(a^{-1}ga)a^{-1} \in aG_sa^{-1}$.

8. Determine the group of automorphisms Aut(G) if $G = C_2 \times C_2$.

Useful Facts

٠

$$\rho_{\theta} \left(\left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \right) = \left[\begin{array}{c} \cos\left(\theta\right) & -\sin\left(\theta\right) \\ \sin\left(\theta\right) & \cos\left(\theta\right) \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$
$$r \left(\left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \right) = \left[\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$