November 14, 2006
Name

Directions: Only write on one side of each page.

Do any six (6) of the following

1. Let $K \subset H \subset G$ be subgroups of a finite group G. Prove the formula

$$
[G: K]=[G: H][H: K] .
$$

(a) The basic formla is that $|G|=[G: H]|H|$ for every group G and every subgroup H of G. Thus

$$
[G: K]=\frac{|G|}{|K|}=\frac{|G|}{|H|} \frac{|H|}{|K|}=[G: H][H: K] .
$$

2. Do both of the following:
(a) If S is a set and G is a group acting on S, prove that the relation

$$
s^{\sim} s^{\prime} \text { if } s^{\prime}=g s \text { for some } g \in G
$$

is an equivalence relation.
i. Reflexive: es $=s$, symmetric: $g s_{1}=s_{2}$ implies $s_{1}=g^{-1} s_{2}$, transitive: $g s_{1}=s_{2}$ and $h s_{2}=s_{3}$ implies ($h g$) $s_{1}=h\left(g s_{1}\right)=s_{3}$
(b) Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism, and let S be a set on which G^{\prime} acts. Use ϕ to define, with proof, a group action of G on S.
i. Given the group action $g^{\prime} s$ for the group G^{\prime} define a group action for the group G by $g s=\phi(g) s=g^{\prime} s$ where $\phi(g)=g^{\prime}$. Then es $=\phi(e) s=e^{\prime} s=s$ and $g_{2}\left(g_{1} s\right)=g_{2}\left(g_{1}^{\prime} s\right)=$ $\phi\left(g_{2}\right)\left(g_{1}^{\prime} s\right)=g_{2}^{\prime}\left(g_{1}^{\prime} s\right)=\left(\phi\left(g_{1}\right) \phi\left(g_{2}\right)\right) s=\phi\left(g_{2} g_{1}\right) s=\left(g_{2} g_{1}\right)^{\prime} s=\left(g_{2} g_{1}\right) s$.
3. Do one of the following
(a) Let G be a group containing normal subgroups of orders 3 and 5 , respectively. Prove G contains an element of order 15.
i. Let H have order 3 and K have order 5 . Normality of H and K in G tells us that $h k h^{-1} k^{-1}=$ $\left(h k h^{-1}\right) k^{-1}=h\left(k h^{-1} k^{-1}\right)$ is an element in $H \cap K$. But $H \cap K \leq H$ and $H \cap K \leq K$ so $|H \cap K|$ divides both 3 and 5 and so there is only one element, e, in $H \cap K$. Thus, $h k h^{-1} k^{-1}=e$ so $h k=k h$ for every $h \in H$ and $k \in K$. Now let a be the generator of the cyclic group H and k the generator of the cyclic group K. The element $a b$ of G satisfies $(a b)^{n}=a^{n} b^{n}$ and the smallest positive number n for which this yields e must have both 3 and 5 as divisors. Thus $n=15$ is the order of the element $a b$ in G.
(b) Let H, K be subgroups of a group G. Show the set of products $H K=\{h k: h \in H, k \in K\}$ is a subgroup if and only if $H K=K H$.
i. " \rightarrow " If $H K \leq G$
A. $k h=\left(h^{-1} k^{-1}\right)^{-1} \in H K$ by closure of subgroups and $K H \subset H K$.
B. $K H$ is closed under inverses since $(k h)^{-1}=h^{\prime} k^{\prime} \in H K$ so $h k=\left(k^{-1} h^{-1}\right)^{-1} \in K H$ and $K H=H K$
ii. " \leftarrow " If $H K=K H$ then $\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)^{-1}=h_{1}\left(k_{1} h_{2}^{-1}\right) k_{2}^{-1}=h_{1}\left(h_{3} k_{3}\right) k_{2} \in H K$ so $H K$ is a subgroup by the 1 step theorem.
4. Do one of the following:

When we classified the group M of rigid motions of the plane we claimed the following six relations were all true and proved a few of them.
(a) Add to our certainty by algebraically proving either part iv. or part v .
i. $t_{a} t_{b}=t_{a+b}$
ii. $\rho_{\theta} \rho_{\eta}=\rho_{\theta+\eta}$
iii. $r r=i$
iv. $\rho_{\theta} t_{a}=t_{a^{\prime}} \rho_{\theta}$, where $a^{\prime}=\rho_{\theta}(a)$
v. $r t_{a}=t_{a^{\prime}} r$, where $a^{\prime}=r(a)$
A. Write out $r t_{a}(x)$ and $t_{a^{\prime}} r(x)$ using the functions below to see that they are equal for all x.
vi. $r \rho_{\theta}=\rho_{-\theta} r$.
(b) Use the above relations to show that if m is an orientation reversing motion of the plane then m^{2} is a translation.
i.

$$
\begin{aligned}
m^{2} & =\left(t_{a} \rho r\right)\left(t_{a} \rho r\right)=t_{a} \rho t_{a^{\prime}} r \rho r= \\
& =t_{a} \rho t_{a^{\prime}} \rho^{-1} r r=t_{a} \rho t_{a^{\prime}} \rho^{-1} \\
& =t_{a} t_{a^{\prime \prime}} \rho \rho^{-1} \\
& =t_{a+a^{\prime \prime}}
\end{aligned}
$$

(c) Compute the glide vector of the glide $t_{\vec{a}} \rho_{\theta} r$ in terms of \vec{a} and θ.
5. Do one of the following:
(a) Let G be a group and $\operatorname{Aut}(G)$ the group of automorphisms of G. Prove or disprove: The set of inner automorphisms $\operatorname{Inn}(G)=\left\{\phi \in \operatorname{Aut}(G): \phi(g)=x g x^{-1}\right.$ for some $\left.x \in G\right\}$ is a normal subgroup of Aut (G).
i. $\phi, \psi \in \operatorname{Inn}(G)$ where $\phi(g)=x g x^{-1}$ and $\psi(g)=y g y^{-1}$, then $\phi \circ \psi^{-1}(g)=\phi\left(y^{-1} g y\right)=$ $x y^{-1} g y x^{-1}=\left(x y^{-1}\right) g\left(x y^{-1}\right)^{-1} \in \operatorname{Inn}(G)$ so $\operatorname{Inn}(G)$ is a subgroup by the one step test.
ii. Let f be an automorphism and $\phi \in \operatorname{Inn}(G)$ as above then $f \phi f^{-1}(g)=f\left(x f^{-1}(g) x^{-1}\right)=$ $f(x) f\left(f^{-1}(g)\right) f\left(x^{-1}\right)=(f(x)) g(f(x))^{-1} \in \operatorname{Inn}(G)$
(b) Let S be a set on which a group G operates. Let $H=\{g \in G: g s=s$ for all $s \in S\}$. Prove H is a normal subgroup of G.
i. Let $x \in G$ and $h \in H$ then $\left(x h x^{-1}\right) s=x\left(h\left(x^{-1} s\right)\right)=x\left(x^{-1}(s)\right)=e s=s$ so H is normal in G.
6. The following patterns represent small portions of two tilings of the infinite plane. Circle one of the following patterns and let G be the group of symmetries of that tiling. Determine the point group of G.

Figure 1: 1
(a) See attached image file for the patterns
(b) $\# 1$: If the pattern repeats to cover the plane then the smallest angle of rotation is π and there are horizontal reflections so the point group is D_{2} If the pattern is restricted to an infinte horizontal strip then the smallest angle of rotation is 2π and the point group is D_{1}
(c) $\# 2$: Similarly, for a plane-filling pattern the point group is D_{2} and for an infinite strip it is again D_{2}
7. Let G be a group acting on the set S. Let s be a fixed element in S and t an element in the orbit of s, say $t=a s$. Prove the stabilizer of t in G is a conjugate subgroup of the stabilizer of s in G. Specifically, show $G_{t}=a G_{s} a^{-1}$.
(a) $g \in G_{t}$ iff $g t=t$ iff $g(a s)=a s$ iff $\left(a^{-1} g a\right) s=s$ iff $a^{-1} g a \in G_{s}$ iff $g=a\left(a^{-1} g a\right) a^{-1} \in a G_{s} a^{-1}$.
8. Determine the group of automorphisms Aut (G) if $G=C_{2} \times C_{2}$.

Useful Facts

\bullet

$$
\begin{aligned}
\rho_{\theta}\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) & =\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
r\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) & =\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

