November 14, 2006

Technology used:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.
- When given a choice, be sure to specify which problem(s) you want graded.

Do any two (2) of these computational problems

C.1. Show that $\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$ is an eigenvector for the matrix $\left[\begin{array}{rrr}2 & -6 & 6 \\ 1 & 9 & -6 \\ -2 & 16 & -13\end{array}\right]$ and determine the corresponding eigenvalue.
(a) $\left[\begin{array}{rrr}2 & -6 & 6 \\ 1 & 9 & -6 \\ -2 & 16 & -13\end{array}\right]\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{c}4 \\ -4 \\ -8\end{array}\right]=-4\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$ so the eigenvalue is $\lambda=-4$.
C.2. Given the subspace V of \mathbf{C}^{4} where $V=\left\langle\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]\right\rangle$, determine the dimension of the subspace V^{\perp} by finding a basis for V^{\perp}.
(a)

$$
\begin{aligned}
& V^{\perp}=\left\{\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]:\left\langle\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]\right\rangle=0 \text { and }\left\langle\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]\right\rangle=0\right\} \\
&=\left\{\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]: a+b=0 \text { and } a+2 b+3 c+4 d=0\right\} \\
&=\left\{\left[\begin{array}{c}
3 c+4 d \\
-3 c-4 d \\
c \\
d
\end{array}\right]\right\}=\left\{\left[\begin{array}{c}
3 \\
-3 \\
1 \\
0
\end{array}\right]+d\left[\begin{array}{c}
4 \\
-4 \\
0 \\
1
\end{array}\right]: c, d \in \mathbf{C}\right\} \\
& \text { so }\left\{c\left[\begin{array}{c}
3 \\
-3 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
4 \\
-4 \\
0 \\
1
\end{array}\right]\right\} \text { is a basis for } V^{\perp} \text { and the latter has dimension } 2 .
\end{aligned}
$$

C.3. The characteristic polynomial of $A=\left[\begin{array}{rrr}-2 & -6 & -6 \\ -3 & 2 & -2 \\ 3 & 2 & 6\end{array}\right]$ is $P_{A}(x)=-(x+2)(x-4)^{2}$. Find all eigenvalues and determine their algebraic and geometric multiplicities.
(a) $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad$ so $A-(-2) I_{3}=\left[\begin{array}{ccc}0 & -6 & -6 \\ -3 & 4 & -2 \\ 3 & 2 & 8\end{array}\right]$, row echelon form: $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$ so $E_{A}(-2)=\left\langle\left[\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right]\right\rangle$
$A-4 I_{3}=\left[\begin{array}{ccc}-6 & -6 & -6 \\ -3 & -2 & -2 \\ 3 & 2 & 2\end{array}\right]$, row echelon form: $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$ so $E_{A}(4)=\left\langle\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right\rangle$
Thus, $\lambda=-2$ has algebraic multiplicity 1 and geometric multiplicity 1 and $\lambda=4$ has algebraic multiplicity 2 and geometric multiplicity 1 .

Do any two (2) of these problems from the text, homework, or class.
You may NOT just cite a theorem or result in the text. You must prove these results.
M.1. Prove Theorem RMRT, Rank of a Matrix is the Rank of the Transpose:

Suppose A is an $m \times n$ matrix. Then $r(A)=r\left(A^{t}\right)$.
(a) The proof is in the textbook.
M.2. From Project 11: Explain why the following 5×5 matrix that has a 3×3 zero submatrix is definitely singular (regardless of the 16 non-zeros marked by x 's.)

$$
A=\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
0 & 0 & 0 & x & x \\
0 & 0 & 0 & x & x \\
0 & 0 & 0 & x & x
\end{array}\right]
$$

(a) We show $\operatorname{det}(A)=0$ which implies A is singular. Note that expanding det $=\left[\begin{array}{llll}x & x & x & x \\ 0 & 0 & x & x \\ 0 & 0 & x & x \\ 0 & 0 & x & x\end{array}\right]$ along the first column gives $x\left|\begin{array}{lll}0 & x & x \\ 0 & x & x \\ 0 & x & x\end{array}\right|$ which equals zero because of the column of all zeros. Thus, expanding the determinant of A along the top row gives

$$
\begin{aligned}
\operatorname{det}(A) & =x\left|\begin{array}{llll}
x & x & x & x \\
0 & 0 & x & x \\
0 & 0 & x & x \\
0 & 0 & x & x
\end{array}\right|-x\left|\begin{array}{cccc}
x & x & x & x \\
0 & 0 & x & x \\
0 & 0 & x & x \\
0 & 0 & x & x
\end{array}\right|+0-0 \\
& =0-0
\end{aligned}
$$

M.3. Exercise T60 in subsection PD (Properties of Dimension): Suppose that W is a vector space with dimension 5 , and U and V are subspaces of W, each of dimension 3. Prove that $U \cap V$ contains a non-zero vector.
(a) Proof in text.

Do two (2) of these problems you've not seen before.

T.1. Label the following statements as being true or false.
(a) The rank of a matrix is equal to the number of its nonzero columns. False: $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ has rank 1 .
(b) The rank of a matrix is equal to the number of its nonzero rows. False: $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ has rank 1.
(c) The $m \times n$ zero matrix is the only $m \times n$ matrix having rank 0 . True
(d) Elementary row operations preserve rank. True
(e) An $n \times n$ matrix of rank n is invertible. True
(f) It is possible for a 3×5 matrix to have rank 4 . False: a 3×5 can have at most 3 leading ones
(g) It is possible for a 5×3 matrix to have rank 4 . False: a 5×3 can have at most 3 leading ones
T.2. Suppose that A is a 4×4 matrix with exactly two distinct eigenvalues, 5 and -9 and let $E_{A}(5)$ and $E_{A}(-9)$ be the corresponding eigenspaces, respectively.
(a) Write all possible characteristic polynomials of A that are consistent with $\operatorname{dim}\left(E_{A}(5)\right)=3$ i. $1 \leq \gamma_{A}(\lambda) \leq \alpha_{A}(\lambda)$ and $\alpha_{A}(5)+\alpha_{A}(-9)=4$ tells us that $P_{A}(x)=(x-5)^{3}(x+9)^{1}$
(b) Write all possible characteristic polynomials of A that are consistent with $\operatorname{dim}\left(E_{A}(-9)\right)=2$
i. $1 \leq \gamma_{A}(\lambda) \leq \alpha_{A}(\lambda)$ and $\alpha_{A}(5)+\alpha_{A}(-9)=4$ tells us that $P_{A}(x)=(x-5)^{2}(x+9)^{2}$ or $P_{A}(x)=(x-5)^{1}(x+9)^{3}$
T.3. A matrix A is idempotent if $A^{2}=A$. Show that the only possible eigenvalues of an idempotent matrix are $\lambda=0$ and $\lambda=1$. Then give an example of a matrix that is idempotent and has both of these two values as eigenvalues.
(a) $A^{2} \vec{x}=A(A \vec{x})=A(\lambda \vec{x})=\lambda(A \vec{x})=\lambda(\lambda \vec{x})=\lambda^{2} \vec{x}$ and $A^{2} \vec{x}=A \vec{x}=\lambda \vec{x}$ tells us $\lambda^{2} \vec{x}=\lambda \vec{x}$ and since $\vec{x} \neq \overrightarrow{0}$, then $\lambda^{2}=\lambda$ so $\lambda=0$ or 1 .
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is idempotent and with eigenvalues 0 and 1.
T.4. An $n \times n$ matrix A is nilpotent if, for some positive integer $k, A^{k}=O$, where O denotes the $n \times n$ zero matrix. Prove that if A is nilpotent, then A is not invertible.
(a) Consider $0=\operatorname{det}(O)=\operatorname{det}\left(A^{k}\right)=[\operatorname{det}(A)]^{k}$. Thus $\operatorname{det}(A)=0$ and A is singular and hence not invertible.

