November 14, 2006

Name

Technology used:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.
- When given a choice, be sure to specify which problem(s) you want graded.

Do any two (2) of these computational problems

- C.1. Show that $\begin{bmatrix} -1\\1\\2 \end{bmatrix}$ is an eigenvector for the matrix $\begin{bmatrix} 2 & -6 & 6\\1 & 9 & -6\\-2 & 16 & -13 \end{bmatrix}$ and determine the corresponding eigenvalue.
 - (a) $\begin{bmatrix} 2 & -6 & 6 \\ 1 & 9 & -6 \\ -2 & 16 & -13 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \\ -8 \end{bmatrix} = -4 \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$ so the eigenvalue is $\lambda = -4$.
- C.2. Given the subspace V of \mathbf{C}^4 where $V = \left\langle \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} \right\rangle$, determine the dimension of the subspace V^\perp by finding a basis for V^\perp .

(a)

$$V^{\perp} = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \left\langle \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\rangle = 0 \text{ and } \left\langle \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \right\rangle = 0 \right\}$$

$$= \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a + b = 0 \text{ and } a + 2b + 3c + 4d = 0 \right\}$$

$$= \left\{ \begin{bmatrix} 3c + 4d \\ -3c - 4d \\ c \\ d \end{bmatrix} \right\} = \left\{ c \begin{bmatrix} 3 \\ -3 \\ 1 \\ 0 \end{bmatrix} + d \begin{bmatrix} 4 \\ -4 \\ 0 \\ 1 \end{bmatrix} : c, d \in \mathbf{C} \right\}$$

so
$$\left\{ c \begin{bmatrix} 3 \\ -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ -4 \\ 0 \\ 1 \end{bmatrix} \right\}$$
 is a basis for V^{\perp} and the latter has dimension 2.

C.3. The characteristic polynomial of
$$A = \begin{bmatrix} -2 & -6 & -6 \\ -3 & 2 & -2 \\ 3 & 2 & 6 \end{bmatrix}$$
 is $P_A(x) = -(x+2)(x-4)^2$. Find all eigenvalues and determine their algebraic and geometric multiplicities.

(a)
$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 so $A - (-2)I_3 = \begin{bmatrix} 0 & -6 & -6 \\ -3 & 4 & -2 \\ 3 & 2 & 8 \end{bmatrix}$, row echelon form: $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ so $E_A(-2) = \left\langle \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix} \right\rangle$

$$A - 4I_3 = \begin{bmatrix} -6 & -6 & -6 \\ -3 & -2 & -2 \\ 3 & 2 & 2 \end{bmatrix}$$
, row echelon form: $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ so $E_A(4) = \left\langle \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \right\rangle$

Thus, $\lambda = -2$ has algebraic multiplicity 1 and geometric multiplicity 1 and $\lambda = 4$ has algebraic multiplicity 2 and geometric multiplicity 1.

Do any two (2) of these problems from the text, homework, or class.

You may NOT just cite a theorem or result in the text. You must prove these results.

- M.1. Prove Theorem RMRT, Rank of a Matrix is the Rank of the Transpose: Suppose A is an $m \times n$ matrix. Then $r(A) = r(A^t)$.
 - (a) The proof is in the textbook.
- M.2. From Project 11: Explain why the following 5×5 matrix that has a 3×3 zero submatrix is definitely singular (regardless of the 16 non-zeros marked by x's.)

$$A = \left[\begin{array}{ccccc} x & x & x & x & x \\ x & x & x & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \end{array} \right]$$

(a) We show
$$\det(A) = 0$$
 which implies A is singular. Note that expanding $\det = \begin{bmatrix} x & x & x & x \\ 0 & 0 & x & x \\ 0 & 0 & x & x \\ 0 & 0 & x & x \end{bmatrix}$

along the first column gives $x \begin{vmatrix} 0 & x & x \\ 0 & x & x \\ 0 & x & x \end{vmatrix}$ which equals zero because of the column of all zeros.

Thus, expanding the determinant of A along the top row gives

$$\det(A) = x \begin{vmatrix} x & x & x & x \\ 0 & 0 & x & x \\ 0 & 0 & x & x \\ 0 & 0 & x & x \end{vmatrix} - x \begin{vmatrix} x & x & x & x \\ 0 & 0 & x & x \\ 0 & 0 & x & x \\ 0 & 0 & x & x \end{vmatrix} + 0 - 0$$

$$= 0 - 0$$

- M.3. Exercise T60 in subsection PD (Properties of Dimension): Suppose that W is a vector space with dimension 5, and U and V are subspaces of W, each of dimension 3. Prove that $U \cap V$ contains a non-zero vector.
 - (a) Proof in text.

Do two (2) of these problems you've not seen before.

- T.1. Label the following statements as being true or false.
 - (a) The rank of a matrix is equal to the number of its nonzero columns. False: [1 2 3] has rank 1.
 - (b) The rank of a matrix is equal to the number of its nonzero rows. False: $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ has rank 1.
 - (c) The $m \times n$ zero matrix is the only $m \times n$ matrix having rank 0. True
 - (d) Elementary row operations preserve rank. True
 - (e) An $n \times n$ matrix of rank n is invertible. True
 - (f) It is possible for a 3×5 matrix to have rank 4. **False:** a 3×5 can have at most 3 leading ones
 - (g) It is possible for a 5×3 matrix to have rank 4. False: a 5×3 can have at most 3 leading ones
- T.2. Suppose that A is a 4×4 matrix with exactly two distinct eigenvalues, 5 and -9 and let $E_A(5)$ and $E_A(-9)$ be the corresponding eigenspaces, respectively.
 - (a) Write all possible characteristic polynomials of A that are consistent with $\dim (E_A(5)) = 3$ i. $1 \le \gamma_A(\lambda) \le \alpha_A(\lambda)$ and $\alpha_A(5) + \alpha_A(-9) = 4$ tells us that $P_A(x) = (x-5)^3 (x+9)^1$
 - (b) Write all possible characteristic polynomials of A that are consistent with dim $(E_A(-9)) = 2$ i. $1 \le \gamma_A(\lambda) \le \alpha_A(\lambda)$ and $\alpha_A(5) + \alpha_A(-9) = 4$ tells us that $P_A(x) = (x-5)^2(x+9)^2$ or $P_A(x) = (x-5)^1(x+9)^3$
- T.3. A matrix A is idempotent if $A^2 = A$. Show that the only possible eigenvalues of an idempotent matrix are $\lambda = 0$ and $\lambda = 1$. Then give an example of a matrix that is idempotent and has both of these two values as eigenvalues.
 - (a) $A^2\vec{x} = A(A\vec{x}) = A(\lambda\vec{x}) = \lambda(A\vec{x}) = \lambda(\lambda\vec{x}) = \lambda^2\vec{x}$ and $A^2\vec{x} = A\vec{x} = \lambda\vec{x}$ tells us $\lambda^2\vec{x} = \lambda\vec{x}$ and since $\vec{x} \neq \vec{0}$, then $\lambda^2 = \lambda$ so $\lambda = 0$ or 1.
 - $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is idempotent and with eigenvalues 0 and 1.
- T.4. An $n \times n$ matrix A is **nilpotent** if, for some positive integer k, $A^k = O$, where O denotes the $n \times n$ zero matrix. Prove that if A is nilpotent, then A is not invertible.
 - (a) Consider $0 = \det(O) = \det(A^k) = [\det(A)]^k$. Thus $\det(A) = 0$ and A is singular and hence not invertible.