Technology used:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.
- When given a choice, be sure to specify which problem(s) you want graded.

Do any three (3) of these computational problems

C.1. Do all of the following.
(a) Show that the set of vectors $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right]\right\}$ is linearly dependent.
i. $A=\left[\begin{array}{cccc}1 & -2 & 1 & -2 \\ 0 & 0 & 1 & 3 \\ 1 & 2 & 2 & 1\end{array}\right]$ has row echelon form: $B=\left[\begin{array}{cccc}1 & 0 & 0 & -5 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3\end{array}\right]$, Thus the homogenous linear system $x_{1}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]+x_{2}\left[\begin{array}{c}-2 \\ 0 \\ 2\end{array}\right]+x_{3}\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]+x_{4}\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ has a free variable and so there are nontrivial solutions. Any such solution (like $x_{1}=5, x_{2}=0, x_{3}=-3$, $x_{4}=1$) gives a nontrivial relation of linear dependence for the vectors in S making S linearly dependent
(b) Find two vectors \vec{w}_{1}, \vec{w}_{2} that are both in S and for which $\left.\langle S\rangle=<T\right\rangle$, where $T=\left\{\vec{w}_{1}, \vec{w}_{2}\right\}$.
i. We can't find two vectors whose span equals the span of S but we can find three. By throwing out the last vector in S (because it is associated with a free variable), we get $T=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]\right\}$ and Theorem BS tells us that $\langle S\rangle=\langle T\rangle$.
(c) Write one of the extra vectors in S as a linear combination of \vec{w}_{1}, and \vec{w}_{2}.
i. Using our solutions from part (a) we see $\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right]=-5\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]+3\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$
C.2. Write all of the following complex numbers in the form $a+b i$.
(a) $2(2-3 i)-7(6+2 i)=-38-20 i$
(b) $\frac{4+3 i}{2-i}=\frac{4+3 i}{2-i} \frac{2+1}{2+1}=\frac{10+5 i}{5}=2+i$
(c) \sqrt{i} [Hint: write $(a+b i)^{2}=i$ and solve a system of equations.]
i. $(a+b i)^{2}=i$ gives $a^{2}-b^{2}+2 a b i=0+i$
ii. so $a^{2}-b^{2}=0$, and $2 a b=1$.
iii. $a= \pm b$ and substituting gives $\pm 2 b^{2}=1$. Using the plus sign we have $b=\frac{1}{\sqrt{2}}$ and choosing $a=b=\frac{1}{\sqrt{2}}$ we see that one square root of i is $\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$
C.3. The vectors \vec{u}_{1}, \vec{u}_{2}, and \vec{u}_{3} below are already orthonormal. Use the Gram-Schmidt procedure to find a vector \vec{u}_{4} so that $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{u}_{4}\right\}$ is an orthonormal set.

$$
\vec{u}_{1}=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right], \quad \vec{u}_{2}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right], \quad \vec{u}_{3}=\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right], \vec{v}_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Find all vectors \vec{v}_{4} in R^{4} so that $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ form an orthonormal set.
(a) The Gram-Schmidt formula is

$$
\vec{u}_{i}=\vec{v}_{i}-\left(\frac{<\vec{v}_{i}, \vec{u}_{1}>}{<\vec{u}_{1}, \vec{u}_{1}>}\right) \vec{u}_{1}-\cdots-\left(\frac{<\vec{v}_{i}, \vec{u}_{i-1}>}{<\vec{u}_{i-1}, \vec{u}_{i-1}>}\right) \vec{u}_{i-1}
$$

So

$$
\begin{aligned}
\vec{u}_{4} & =\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]-\left(\frac{<\vec{v}_{4 i}, \vec{u}_{1}>}{<\vec{u}_{1}, \vec{u}_{1}>}\right)\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right]-\left(\frac{<\vec{v}_{4 i}, \vec{u}_{12}>}{<\vec{u}_{2}, \vec{u}_{2}>}\right)\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right]-\left(\frac{<\vec{v}_{4 i}, \vec{u}_{32}>}{<\vec{u}_{3}, \vec{u}_{3}>}\right)\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]-\left(\frac{1 / 2}{1}\right)\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right]-\left(\frac{1 / 2}{1}\right)\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right]-\left(\frac{1 / 2}{1}\right)\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{4} \\
-\frac{1}{4} \\
\frac{1}{4}
\end{array}\right]
\end{aligned}
$$

(b) To guarantee the vectors are orthonormal, we divide by $<\vec{u}_{4}, \vec{u}_{4}>=\sqrt{4 / 16}=\frac{1}{2}$ giving a new

$$
\vec{u}_{4}=\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2}
\end{array}\right] .
$$

C.4. Compute the following matrix-vector product by hand in two ways.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
-4 & 1 & 1 \\
2 & -3 & 5
\end{array}\right]\left[\begin{array}{l}
5 \\
2 \\
3
\end{array}\right]
$$

(a) Using term by term multiplication: $\left[\begin{array}{lll}1 & 1 & 1 \\ -4 & 1 & 1 \\ 2 & -3 & 5\end{array}\right]\left[\begin{array}{l}5 \\ 2 \\ 3\end{array}\right] \cdot=\left[\begin{array}{c}5+2+3 \\ -20+2+3 \\ 10-6+15\end{array}\right]=\left[\begin{array}{c}10 \\ -15 \\ 19\end{array}\right]$
(b) Using the definition: $\left[\begin{array}{lll}1 & 1 & 1 \\ -4 & 1 & 1 \\ 2 & -3 & 5\end{array}\right]\left[\begin{array}{l}5 \\ 2 \\ 3\end{array}\right]=5\left[\begin{array}{l}1 \\ -4 \\ 2\end{array}\right]+2\left[\begin{array}{l}1 \\ 1 \\ -3\end{array}\right]+3\left[\begin{array}{l}1 \\ 1 \\ 5\end{array}\right]=\left[\begin{array}{c}10 \\ -15 \\ 19\end{array}\right]$

Do any two (2) of these problems from the text, homework, or class.
You may NOT just cite a theorem or result in the text. You must prove these results.
M.1. Suppose $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}\right\}$ is a linearly independent set and that $\mathbf{v} \notin\langle S\rangle$. Prove the set $W=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}, \mathbf{v}\right\}$ is a linearly independent set.
(a) Using the definition. Let

$$
\begin{equation*}
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\cdots+\alpha_{p} \mathbf{u}_{p}+\alpha_{p+1} \mathbf{v}=\mathbf{0} \tag{1.}
\end{equation*}
$$

be a relation of linear dependence. We show that the only way this equation can be true is if all of the α 's equal 0 .
(b) If $\alpha_{p+1} \neq 0$ then we can write \mathbf{v} as a linear combination of the other vectors $\mathbf{v}=\frac{-\alpha_{1}}{\alpha_{p+1}} \mathbf{u}_{1}-\cdots-$ $\frac{-\alpha_{p}}{\alpha_{p+1}} \mathbf{u}_{p}$. But we know \mathbf{v} is not in the span of S so this is impossible. Hence we can conclude that a_{p+1} must be zero in equation (1.) and so that equation can be rewritten as

$$
\begin{aligned}
\mathbf{0} & =\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\cdots+\alpha_{p} \mathbf{u}_{p}+(0) \mathbf{v} \\
& =\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\cdots+\alpha_{p} \mathbf{u}_{p}
\end{aligned}
$$

(c) Now the linear independence of S tells us the rest of the α 's are also 0 and we are done.
M.2. Suppose $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a linearly independent set in R^{5}. Is the set of vectors $2 \vec{v}_{1}+\vec{v}_{2}+$ $3 \vec{v}_{3}, \vec{v}_{2}+5 \vec{v}_{3}, 3 \vec{v}_{1}+\vec{v}_{2}+2 \vec{v}_{3}$ linearly dependent or independent?
(a) Using the definition we consider an arbitrary relation of linear dependence and then re-write it by collecting on $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$

$$
\begin{aligned}
\overrightarrow{0} & =a\left(2 \vec{v}_{1}+\vec{v}_{2}+3 \vec{v}_{3}\right)+b\left(\vec{v}_{2}+5 \vec{v}_{3}\right)+c\left(3 \vec{v}_{1}+\vec{v}_{2}+2 \vec{v}_{3}\right) \\
& =(2 a+0 b+3 c) \vec{v}_{1}+(a+b+c) \vec{v}_{2}+(3 a+5 b+2 c) \vec{v}_{3}
\end{aligned}
$$

(b) Since S is linearly independent we know each of the coefficients above must equal zero giving rise to the homogeneous system of linear equations with augmented matrix $[A \mid \overrightarrow{0}]=\left[\begin{array}{cccc}2 & 0 & 3 & 0 \\ 1 & 1 & 1 & 0 \\ 3 & 5 & 2 & 0\end{array}\right]$. Row reducing we obtain $B=\left[\begin{array}{cccc}1 & 0 & \frac{3}{2} & 0 \\ 0 & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. Thus we see that the linear system has infinitely many solutions - one of which is $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right]$.This means S is linearly dependent since there are many non-trivial relations of linear dependence, one of which is

$$
\overrightarrow{0}=-3\left(2 \vec{v}_{1}+\vec{v}_{2}+3 \vec{v}_{3}\right)+(1)\left(\vec{v}_{2}+5 \vec{v}_{3}\right)+2\left(3 \vec{v}_{1}+\vec{v}_{2}+2 \vec{v}_{3}\right)
$$

M.3. Prove Theorem TMA, Transpose and Matrix Addition.

Suppose that A and B are $m \times n$ matrices. Then $(A+B)^{t}=A^{t}+B^{t}$.
(a) This proof is in the textbook on page 206.

Do one (1) of these problems you've not seen before.
T.1. Suppose A is a square matrix of size n satisfying $A^{2}=A A=O$. Prove that the only vector \vec{x} satisfying $\left(I_{n}-A\right) \vec{x}=\overrightarrow{0}$ is the zero vector.
(a) We algebraically manipulate the equation

$$
\begin{aligned}
\left(I_{n}-A\right) \vec{x} & =\overrightarrow{0} \\
A\left(I_{n}-A\right) \vec{x} & =A \overrightarrow{0} \\
\left(A I_{n}-A^{2}\right) \vec{x} & =\overrightarrow{0} \\
A \vec{x}-A^{2} \vec{x} & =\overrightarrow{0} \\
A \vec{x}-O \vec{x} & =\overrightarrow{0} \\
A \vec{x}-\overrightarrow{0} & =\overrightarrow{0} \\
A \vec{x} & =\overrightarrow{0}
\end{aligned}
$$

T.2. Recall that $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=a\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+b\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+c\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Now explain why the fact that $\left[\begin{array}{rrrrrr}3 & 2 & 0 & 1 & 0 & 0 \\ -4 & -2 & -2 & 0 & 1 & 0 \\ -5 & -2 & -4 & 0 & 0 & 1\end{array}\right]$ has reduced row-echelon form $\left[\begin{array}{cccccc}1 & 0 & 2 & 0 & 1 & -1 \\ 0 & 1 & -3 & 0 & -\frac{5}{2} & 2 \\ 0 & 0 & 0 & 1 & 2 & -1\end{array}\right]$ tells us the only vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ that can be in the span of $S=\left\{\left[\begin{array}{c}3 \\ -4 \\ -5\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ -2\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ -4\end{array}\right]\right\}$ are those where $a+2 b-c=0$.
(a) We know that $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ is in the span of S if and only if the following system of linear equations is consistent

$$
\begin{aligned}
3 x+2 y+0 z & =a \\
-4 x-2 y-2 z & =b \\
-5 x-2 y-4 z & =c
\end{aligned}
$$

(b) But we can write this as

$$
\begin{aligned}
3 x+2 y+0 z & =(1) a+(0) b+(0) c \\
-4 x-2 y-2 z & =(0) a+(1) b+(0) c \\
-5 x-2 y-4 z & =(0) a+(0) b+(1) c
\end{aligned}
$$

(c) Now note that running elementary operations on the matrix B below uses the last three columns to

$$
B=\left[\begin{array}{rrrrrr}
3 & 2 & 0 & 1 & 0 & 0 \\
-4 & -2 & -2 & 0 & 1 & 0 \\
-5 & -2 & -4 & 0 & 0 & 1
\end{array}\right]
$$

keep track of how many a, b, and c 's there are if we were to run those same elementary row operations by hand on the augmented matrix A.

$$
A=\left[\begin{array}{cccc}
3 & 2 & 0 & a \\
-4 & -2 & -2 & b \\
-5 & -2 & -4 & c
\end{array}\right]
$$

Thus the reduced echelon form of B tells us that the reduced row echelon form of A is

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & (0) a+b-c \\
0 & 1 & -3 & (0) a-\frac{5}{2} b+2 c \\
0 & 0 & 0 & a+2 b-c
\end{array}\right]
$$

which represents a consistent system if and only if $a+2 b-c$ is not 0 .

