Solution to Number 63 page 187 of Bradley,Smith

63. Find all points on the cardioid

$$
\left(x^{2}+y^{2}\right)^{3 / 2}=\left(x^{2}+y^{2}\right)^{1 / 2}+x
$$

where the tangent line is vertical.

0.0.1 Solution

We find the points where $d y / d x$ is undefined by solving for $d y / d x$ and determining where the denominator equals 0 .
Taking the derivative of both sides of the equation with respect to x, we have

$$
\begin{aligned}
\frac{d}{d x}\left[\left(x^{2}+y^{2}\right)^{3 / 2}\right] & =\frac{d}{d x}\left[\left(x^{2}+y^{2}\right)^{1 / 2}+x\right] \\
\frac{3}{2}\left(x^{2}+y^{2}\right)^{1 / 2}\left(2 x+2 y \frac{d y}{d x}\right) & =\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}\left(2 x+2 y \frac{d y}{d x}\right)+1 \\
\frac{3}{2}\left(x^{2}+y^{2}\right)^{1 / 2}(2 x)+\frac{3}{2}\left(x^{2}+y^{2}\right)^{1 / 2}\left(2 y \frac{d y}{d x}\right) & =\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}(2 x)+\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}\left(2 y \frac{d y}{d x}\right)+1
\end{aligned}
$$

Simplifying, we have

$$
3 x\left(x^{2}+y^{2}\right)^{1 / 2}+3 y\left(x^{2}+y^{2}\right)^{1 / 2} \frac{d y}{d x}=x\left(x^{2}+y^{2}\right)^{-1 / 2}+y\left(x^{2}+y^{2}\right)^{-1 / 2} \frac{d y}{d x}+1
$$

Collecting terms with $d y / d x$, we obtain

$$
\begin{aligned}
3 y\left(x^{2}+y^{2}\right)^{1 / 2} \frac{d y}{d x}-y\left(x^{2}+y^{2}\right)^{-1 / 2} \frac{d y}{d x} & =x\left(x^{2}+y^{2}\right)^{-1 / 2}+1-3 x\left(x^{2}+y^{2}\right)^{1 / 2} \\
\left(3 y\left(x^{2}+y^{2}\right)^{1 / 2}-y\left(x^{2}+y^{2}\right)^{-1 / 2}\right) \frac{d y}{d x} & =x\left(x^{2}+y^{2}\right)^{-1 / 2}+1-3 x\left(x^{2}+y^{2}\right)^{1 / 2} \\
\frac{d y}{d x} & =\frac{x\left(x^{2}+y^{2}\right)^{-1 / 2}+1-3 x\left(x^{2}+y^{2}\right)^{1 / 2}}{3 y\left(x^{2}+y^{2}\right)^{1 / 2}-y\left(x^{2}+y^{2}\right)^{-1 / 2}} .
\end{aligned}
$$

As indicated above, the points we are interested in correspond to those points (x, y) where the denominator of the last fraction above equals zero. That is, we solve

$$
\begin{aligned}
3 y\left(x^{2}+y^{2}\right)^{1 / 2}-y\left(x^{2}+y^{2}\right)^{-1 / 2} & =0 \\
3 y\left(x^{2}+y^{2}\right)^{1 / 2}-\frac{y}{y\left(x^{2}+y^{2}\right)^{1 / 2}} & =0 \\
\frac{3 y\left(x^{2}+y^{2}\right)-y}{y\left(x^{2}+y^{2}\right)^{1 / 2}} & =0
\end{aligned}
$$

Since a fraction can equal zero only when its numerator is zero, we have

$$
\begin{array}{r}
3 y\left(x^{2}+y^{2}\right)-y=0 \\
y\left(3\left(x^{2}+y^{2}\right)-1\right)=0
\end{array}
$$

which is true whenever $y=0$ or $\left(3\left(x^{2}+y^{2}\right)-1\right)=0$.

Case 1. In the case where $y=0$, the equation of the cardiod

$$
\left(x^{2}+y^{2}\right)^{3 / 2}=\left(x^{2}+y^{2}\right)^{1 / 2}+x
$$

simplifies to

$$
\begin{aligned}
\left(x^{2}+0\right)^{3 / 2} & =\left(x^{2}+0\right)^{1 / 2}+x \\
|x|^{3} & =|x|+x
\end{aligned}
$$

Now, if x is negative, this last equation is

$$
\begin{aligned}
(-x)^{3} & =(-x)+x \\
-x^{3} & =0 \\
x & =0
\end{aligned}
$$

If x is non-negative, $|x|^{3}=|x|+x$ becomes

$$
\begin{aligned}
x^{3} & =2 x \\
x^{3}-2 x & =0 \\
x\left(x^{2}-2\right) & =0 \\
x & =0, \sqrt{2},-\sqrt{2}
\end{aligned}
$$

Note that $-\sqrt{2}$ cannot be a solution because we are in the case when x is non-negative.
Thus $y=0$ leads to the points $(0,0)$ and $(\sqrt{2}, 0)$ as places where the derivative $\frac{d y}{d x}$ fails to exist. To find the remaining places we still need to look at the remaining case.

Case 2. In this case, we have

$$
\begin{aligned}
3\left(x^{2}+y^{2}\right)-1 & =0 \\
\left(x^{2}+y^{2}\right) & =\frac{1}{3}
\end{aligned}
$$

Thus the original equation for the cardioid simplifies in the following fashion.

$$
\begin{aligned}
\left(x^{2}+y^{2}\right)^{3 / 2} & =\left(x^{2}+y^{2}\right)^{1 / 2}+x \\
\left(\frac{1}{3}\right)^{3 / 2} & =\left(\frac{1}{3}\right)^{1 / 2}+x \\
x & =\left(\frac{1}{3}\right)^{3 / 2}-\left(\frac{1}{3}\right)^{1 / 2}
\end{aligned}
$$

So, for this value of x we have $\left(x^{2}+y^{2}\right)=\frac{1}{3}$ which reduces to

$$
\begin{aligned}
\left(\left(\frac{1}{3}\right)^{3 / 2}-\left(\frac{1}{3}\right)^{1 / 2}\right)^{2}+y^{2} & =\frac{1}{3} \\
y^{2} & =\frac{1}{3}-\left(\left(\frac{1}{3}\right)^{3 / 2}-\left(\frac{1}{3}\right)^{1 / 2}\right)^{2} \\
& =\frac{1}{3}-\left(\frac{1}{27}-2\left(\frac{1}{9}\right)+\left(\frac{1}{3}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{3}-\left(\frac{1-6+9}{27}\right) \\
& =\frac{1}{3}-\frac{4}{27} \\
& =\frac{5}{27}
\end{aligned}
$$

This means that there are two more points where $d y / d x$ is not defined. Those points are

$$
\left(\left(\frac{1}{3}\right)^{3 / 2}-\left(\frac{1}{3}\right)^{1 / 2}, \sqrt{\frac{5}{27}}\right) \text { and }\left(\left(\frac{1}{3}\right)^{3 / 2}-\left(\frac{1}{3}\right)^{1 / 2},-\sqrt{\frac{5}{27}}\right)
$$

