1.1

November 21, 2000

Exam 2

Name

Technology used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. **Only write on one side of each page.**

The Problems

- 1. (6 points each) Give the definitions of the following.
 - (a) The **product group** $G \times G'$ of two groups G and G'.
 - (b) The **quotient group** G/K of a group G by a normal subgroup K. Be sure to indicate the binaray operation in G/K.
 - (c) The **orbit** of an element $s \in S$ where G is a group acting on the set S.
 - (d) The **stabilizer** of an element $s \in S$ where G is a group acting on the set S.
 - (e) A **rigid motion** of the plane to itself.
- 2. (10 points each) If G is a group acting on the set S, the element s is arbitrary in S, and G_s is the stabilizer of s in G, then there is a map from the coset space of G_s in G to the orbit of s defined by

$$\begin{array}{rcl} \phi & : & G/G_s \to O_s \\ \phi \left(aH \right) & = & as \end{array}$$

Prove that this map ϕ is

- (a) one-to-one
- (b) onto
- 3. (15 points) Use a group action to count the rotational symmetries of a cube. Be explicit about what you choose as your set S.
- 4. (10 points) Do **one** of the following.
 - (a) Prove if |G| = p where p is a prime number, then G is isomorphic to a cyclic group of order p.
 - (b) Determine all automorphisms of the group C_4 . Be sure to show your functions are automorphisms.
- 5. (15 points) Do **one** of the following.
 - (a) Let G be a subgroup of M that contains rotations by $\theta = \pi$ about two points: the origin and the point with coordinates $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Prove **algebraically** that G contains a translation. [See the Useful Facts at the end of the examination for tools.]

- (b) Show **algebraically** that the successive reflection across two different lines through the origin is a rotation. For your proof, use the specific lines that form angles of $\pi/4$ and $\pi/2$ with the positive x_1 - axis. What is the angle θ for the resulting rotation ρ_{θ} ? [See the Useful Facts at the end of the examination for tools.]
- 6. (10 points) Find all matrices in the stabilizer of the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ if the group action is conjugation in GL(2, R). A useful fact is that $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

1.2 Useful Facts

- Theorem 1 Every rigid motion can be written in one of the forms (uniquely) $m = t_a \rho_\theta$ or $m = t_a \rho_\theta r$ by using the following formulas for composition.
 - 1. $t_a t_b = t_{a+b}$
 - 2. $\rho_{\theta}\rho_{\eta} = \rho_{\theta+\eta}$
 - 3. rr = i
 - 4. $\rho_{\theta}t_{a} = t_{a'}\rho_{\theta}$, where $a' = \rho_{\theta}(a)$
 - 5. $rt_a = t'_a r$, where a' = r(a)
 - $\textit{6. } r\rho_{\theta}=\rho_{-\theta}r.$