1.1

Exam 2
November 21, 2000

Technology used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. (6 points each) Give the definitions of the following.
(a) The product group $G \times G^{\prime}$ of two groups G and G^{\prime}.
(b) The quotient group G / K of a group G by a normal subgroup K. Be sure to indicate the binaray operation in G / K.
(c) The orbit of an element $s \in S$ where G is a group acting on the set S.
(d) The stabilizer of an element $s \in S$ where G is a group acting on the set S.
(e) A rigid motion of the plane to itself.
2. (10 points each) If G is a group acting on the set S, the element s is arbitrary in S, and G_{s} is the stabilizer of s in G, then there is a map from the coset space of G_{s} in G to the orbit of s defined by

$$
\begin{aligned}
\phi & : G / G_{s} \rightarrow O_{s} \\
\phi(a H) & =a s
\end{aligned}
$$

Prove that this map ϕ is
(a) one-to-one
(b) onto
3. (15 points) Use a group action to count the rotational symmetries of a cube. Be explicit about what you choose as your set S.
4. (10 points) Do one of the following.
(a) Prove if $|G|=p$ where p is a prime number, then G is isomorphic to a cyclic group of order p.
(b) Determine all automorphisms of the group C_{4}. Be sure to show your functions are automorphisms.
5. (15 points) Do one of the following.
(a) Let G be a subgroup of M that contains rotations by $\theta=\pi$ about two points: the origin and the point with coordinates $\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Prove algebraically that G contains a translation. [See the Useful Facts at the end of the examination for tools.]
(b) Show algebraically that the successive reflection across two different lines through the origin is a rotation. For your proof, use the specific lines that form angles of $\pi / 4$ and $\pi / 2$ with the positive x_{1} - axis. What is the angle θ for the resulting rotation ρ_{θ} ? [See the Useful Facts at the end of the examination for tools.]
6. (10 points) Find all matrices in the stabilizer of the matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ if the group action is conjugation in $G L(2, R)$. A useful fact is that $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

1.2 Useful Facts

- Theorem 1 Every rigid motion can be written in one of the forms (uniquely) $m=t_{a} \rho_{\theta}$ or $m=t_{a} \rho_{\theta} r$ by using the following formulas for composition.

1. $t_{a} t_{b}=t_{a+b}$
2. $\rho_{\theta} \rho_{\eta}=\rho_{\theta+\eta}$
3. $r r=i$
4. $\rho_{\theta} t_{a}=t_{a^{\prime}} \rho_{\theta}$, where $a^{\prime}=\rho_{\theta}(a)$
5. $r t_{a}=t_{a}^{\prime} r$, where $a^{\prime}=r(a)$
6. $r \rho_{\theta}=\rho_{-\theta} r$.
