September 7, 2000

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"The one real object of education is to have a man in the condition of continually asking questions." -Bishop Mandell Creighton

Problems

1. Do both of the following:
(a) Prove that if G is a group with the property that the square of every element is the identity, then G is abelian.
(b) Let G be a finite group. Show that the number of elements x of G such that $x^{3}=e$ is odd. Show that the number of elements x of G for which $x^{2} \neq e$ is even.
2. Do any two of the following
(a) Prove that every subgroup of a cyclic group is cyclic.
(b) Prove that the set of elements of finite order in an abelian group is a subgroup.
(c) If H and K are subgroups of a group G, show that $H \cap K$ is a subgroup of G. Adapt your proof to show that the intersection of any number of subgroups of G, finite or infinite, is again a subgroup of G. Notational hint: Let C be a collection of subgroups of G. Then we can denote the intersection of all the subgroups in C by

$$
\bigcap_{H \in C} H
$$

3. Optional Problem: Show by example that the product of elements of finite order in a nonabelian group need not have finite order.
