August 29, 2000

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.** "Simple solutions seldom are. It takes a very unusual mind to undertake analysis of the obvious." — Alfred North Whitehead

Problems

When doing problems associated with matrices, you are not restricted to the material covered, so far, in our review.

- 1. Do one of the following.
 - (a) Prove that the First Principle of Mathematical Induction implies the Second Principle of Mathematical Induction.
 - i. [Note: This is **not** an induction proof. It is a proof **about** mathematical induction. The result completes the claim in the textbook that the two principles of Mathematical Induction are each equivalent to the Well Ordoring Principle via

$$\mathbf{WOP} \Longrightarrow^{\text{in text}} 1 \text{st} \Longrightarrow 2 \text{nd} \Longrightarrow^{\text{ask in class}} \mathbf{WOP}$$

since:

- (b) (*) Let A, B be $m \times n$ and $n \times m$ matrices. Prove $I_m AB$ is invertible if and only if $I_n BA$ is invertible.
- 2. Do one of the following.
 - (a) (Vandermonde Determinant)

i. Prove that det $\begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix} = (b-a)(c-a)(c-b).$

ii. (*) Prove an analogous formula for $n \times n$ matrices by using induction and row operations (in a clever fashion) to clear out the first column.

(b) Find a formula for $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^n$, and prove it by induction.

(c) Use induction to compute the determinant of A =

2	-1					1
	-1	2	-1			
		-1	2	-1		
			·			•
			-1	2	-1	
				-1	2	

3. Do **both** of the following.

(a) Let a, b be elements of a group G. Show that the equation ax = b has a unique solution in G.

(b) Let G be a group, with multiplicative notation. Define an **opposite group** G^0 with law of composition $a \circ b$ as follows: The underlying set is the same as for G, but the law of composition is the opposite; that is, define $a \circ b = ba$. Prove that this defines a group.