1 Additional Exercises

1.1 Counting Formula

1. Compute the order of the group of symmetries of a dodecahedron, when orientation reversing symmetries such as reflections in planes, as well as rotations are allowed. Do the same for the symmetries of a cube.
2. Let G be the group of rotational symmetries of a cube. Let S_{e}, S_{f}, S_{v} be the sets of edges, faces and vertices of the cube, respectively. Let H_{e}, H_{f}, H_{v} be the stabilizers of a particular edge, face and vertex, respectively. Determine the formulas that represent the decomposition of each of the three sets S_{e}, S_{f}, S_{v} into orbits for each of the three subgroups.

1.2 Operations of a group on itself

1. GIven a group G, does the mapping $f: G \times G \rightarrow G$ given by $f(g, x)=x g^{-1}$ define a group action of G onto itself?
2. Determine the class equation for each of the following groups.
(a) The quaternion group.
(b) The Klein four group.
(c) The dihedral group D_{5}.
(d) The dihedral group D_{6}
(e) The dihedral group D_{n}

1.3 Class Equation of Icosahedral Group

1. Identify the intersection $I \cap O$ when the dodecahedron and cube are as in Figure 2.7 which was passed out in class. Here, I is the group of 60 rotational symmetries of the dodecahedron and O is the group of 24 rotational symmetries of the cube.
2. Two tetrahedra can be inscribed into a cube C, each one using half of the vertices. Relate this to the inclusion $A_{4} \subset S_{4}$. Here S_{4} is the symmetric group of all permutations of the elements $\{1,2,3,4\}$ and A_{4} is the normal subgroup of S_{4} consisting of the even permutations in S_{4}. Recall that a permutation p is even if its matrix P has the property that $\operatorname{det}(P)=1$.
3. Prove or disprove: An abelian group is simple if and only if it has prime order.
