
Visualizing Novice Approaches to Programming
Using BlueJ Blackbox Data

Chili Johnson
University of Puget Sound

Robert Shelton
University of Puget Sound

Xeno Fish
University of Puget Sound

ABSTRACT
�is paper provides a sample of a LATEX document which conforms,
somewhat loosely, to the forma�ing guidelines for ACM SIG Pro-
ceedings.

1 INTRODUCTION
We sought to create a visualization tool or for mapping how novice
computer science students approached and solved a given assign-
ment. Such a mapping seems intuitive for early problems which
have a relatively small number of truly distinct solutions. One can
only print ”Hello World” so many ways. Beyond that once a set of
students is trying to make a speci�c problem with a speci�c output
as one might remember from introduction courses we could catego-
rize the di�erent end solutions turned in by the class. �ey might
di�er in the control �ow and objecti�cation, thus solutions that
seem to take di�erent approaches might still accomplish the same
end goal. A professor grading thirty or forty di�erent solutions
could recognize similarities and pa�erns across them. What if one
solution was preferable? how do students �nd that solution? How
is this changed making the students do pair programing? Taking
this categorization a step further we could categorize their relative
progresses to map out what brought them to one path or another.
Such a mapping would require not just the end states but also the
start states and a series of intermediate states across many students
completing the same assignment. �e BlueJ Blackbox database gave
us exactly that.

BlueJ, an integrated development environment for Java aimed at
elucidating the nature of object-oriented programing to students
starting out, has an optional opting-in that allows them to record
the student’s code a�er anonymization for academic use. Developed
by the university of Kent, also distributed was an intro textbook
to accompany the so�ware. [3] �eir so�ware records to high
granularity the changes in a students code. �is gave us the data
set we needed as well as uni�ed the assignments needed to be held
constant.

With this data in hand we set out to build a tool to visualize how
the students moved through the solution space. Such a mapping
could be used to see the thought processes of the students, common
pitfalls, and just how varied the solutions could be.

2 BACKGROUND
Everything we did started with the blackbox database. �is col-
lection of student programming assignments, maintained by the
University of Kent, records every time a student moves in between
lines with their cursor as an edit event. �is gave us a fairly �ne

granularity of edits to look at when we were comparing di�erent
source codes. �e database also tracks di�erent sessions of user
activity, and contains all the edit, �le open, �le rename, and any
other events they might perform within those sessions. Edit events
are recorded as either complete sources or di�s. �is forced us to
consider which di�erent kind of source we were looking at, �nd a
complete source, and then apply the di�s up to the �rst successful
compile to plug into the java parser.

�e previous work we looked at for this program either didn’t
generalize the collection of information from the blackbox database
or didn’t use the database itself. ”Modeling How Students Learn
to Program” by Piech, Sahami, Koller, Cooper, and Blikstein was a
similar study that also used abstract syntax trees to parse code, but
their system wasn’t applicable over a large dataset like the one we
wanted to work with. �ey had a set of ”computer science students
with teaching experience [5]” evaluate 90 pairs of source codes
taken from a modi�ed version of eclipse to determine distance. First
of all we wanted to automate the distance function, so manually
coming up with distance metrics wasn’t feasible. �ey also used a
hidden markov model to evaluate the states, but that also wasn’t
feasible for our project because our automatically generated data
turned out to be di�cult to label.

�e other paper we looked at in depth, ”37 Million Compilations:
Investigating Novice Programming mistakes in Large-Scale Student
Data” used the blackbox database speci�cally. [2] �ey were pri-
marily concerned with errors and mistakes made by students. �ey
used compiler errors to catch 4 di�erent kinds of student mistakes,
and the rest of the logical errors were caught with a custom parser.
�is study focused on looking just at mistakes rather than a time
series of student code, and we were more interested in how code
changed over time.

While deciphering and incorporating common error states into
our visual map was something we initially wanted to delve into,
we found it just was not feasible with our approach. We ended
up using a Java abstract syntax tree parser in our abstraction of
student code. Unfortunately the parser we used understandably
could not parse broken code.

�e work done by Hovemeyer, Hellas, Petersen and Spacco deals
with where students tend to make the most mistakes.[4] �ey also
performed analysis on student code through the use of abstract
syntax trees, but they limited their focus speci�cally to control �ow.
�ey found that �Loop problems feature prominently in research
on student understanding of programming concepts, since they
are a major, challenging component of CSI courses.� However, we
decided that rather than looking exclusively at control �ow we
could look at how students factor their code into di�erent sections

BRADCONF, May 2017, University of Puget Sound Chili Johnson, Robert Shelton, and Xeno Fish

������������

����

����

����

����

����

Figure 1: A sample of the desired output of our visualization
tool. Vertices represent clusters of similar project states and
edges represent transitions between di�erent project states.

to get a good idea of how they were thinking through a problem.
We looked at method and class declarations as well as method calls
to di�erentiate between student code.

3 METHOD & IMPLEMENTATION
�e output of our visualization tool is a �nite state machine diagram
which is the condensed representation of many students’ paths
through a particular programming assignment (see section 3.1). Fig-
ure 1 is a toy example of our desired output. �is contrived example
shows students whose projects begin in the same starter code
state, transition through various intermediate states, and ultimately
end up in two di�erent end states.

To produce this diagram, we needed to de�ne not only what
a student’s project’s state is at any given time, but also de�ne a
coordinate space in which these states exist in order to allow states
to be clustered by “similarity” (see section 3.2 Project State).

3.1 Model & Terminology
�e highest-level data model in our tool is the assignment. An as-
signment is a single programming problem (e.g. assigned homework
problem or textbook exercise) which students a�empt to complete.
An assignment is a collection of individual projects each which
represent a single student’s a�empt to complete the assignment.
Projects are assumed to be within the same assignment if they have
identical names, e.g. all projects with the name CSCI161-Hwk1, or
book-exercise are considered to be in the same assignment.

Each project consists of a sequence of sessions. Sessions are
collections of events which occur during the time between when a

Figure 2: Our data model derived from the Blackbox model.
A single assignment is the collection of projects with the
same name.

project is opened, and when it is closed. Events are collected for
many user actions including compilations, changes in source code,
debugging, �le renaming, invocations, etc. Figure 2 Illustrates the
hierarchical structure of our data model.

3.2 Project State
�ere are two components to our concept of project state. �e �rst
is our state representation in which we use abstract syntax trees
(AST) to represent the structure of a project’s source code at any
given time. �e second is the coordinate transformation which
allows us to place these ASTs within a coordinate space.

3.2.1 Abstract Syntax Trees. Java code can be represented as
a tree where any vertex’s children are either statements within
the vertex’s block, or subcomponents of a statement. Figure 3 is a
simpli�ed example of such a tree. We represent a project’s state
as the abstract syntax tree generated directly from the Java source
code of the project.

3.2.2 Coordinate Transformation. In order to a�ord clustering
“similar” project states together, we require a concept of distance or
space. Determining the distance, or edit distance, between two trees
is a computationally expensive problem. Using tree edit distance as
a distance metric is further complicated by the fact that vertices—
e.g. method declarations—in certain levels of an abstract syntax tree
can be reordered without a�ect on the overall program, whereas
some vertices—e.g. control structures—cannot be reordered without
semantically changing the program.

We ultimately decided to implement a relatively naı̈ve approach
to the coordinate transformation. To convert an abstract syntax
tree into its coordinate, we �rst de�ne the space in which we are in-
terested; in our case we are interested in class declarations, method
declarations, method calls, variable declarations, and assignments
statements, but our method is easily modi�able to consider more
or di�erent features of a given program. We take these interesting
features and traverse the abstract syntax tree, counting the num-
ber of occurrences of each feature. We then take these counts as

Visualizing Novice Approaches to Programming BRADCONF, May 2017, University of Puget Sound

�����

������� ������� ������

��� ��

���������� ����������

Figure 3: A simpli�ed example of a Java abstract syntax tree.

Figure 4: A hierarchical clustering tree. Project states are
clustered by similarity, and the resulting hierarchy can be
retroactively cut to visualize states at di�erent levels of gran-
ularity.

an n-tuple and use that tuple as our coordinate in space. �e dis-
tance between two states/trees is then only the Euclidean distance
between their computed coordinates.

For example, if a given project state includes 8 classes, 4 method
declarations, 6 method calls, 8 variable declarations, and 5 assign-
ments, our naı̈ve transformation would produce the coordinate
(8, 4, 6, 8, 5).

3.3 Clustering
A�er de�ning the coordinate space into which our project states
can be transformed, as well as de�ning the transformation itself,
we are able to employ a clustering algorithm to determine which
projects are most similar in terms of program structure. We chose
to employ an agglomerative hierarchical clustering algorithm. �e
advantage of using the particular algorithm is that it produces a
hierarchical tree of similarity which we can retroactively cut at
di�erent levels in order to visualize student progress at coarser or
�ner granularity. Figure 4 illustrates this property.

3.4 Analysis Pipeline
We implemented our visualization tool as a linear pipeline of pro-
cessing stages as illustrated in Figure 5. Our pipeline was wri�en
in the Ruby programming language. Each stage saves output incre-
mentally to disk to allow the analysis to be tolerant to interruptions.
Each stage—except the �rst stage—reads the previous stage’s output
from disk as it performs its computations. �ere are 3 stages to our

Figure 5: �e �ow of data through our analysis pipeline, in-
cluding intermediate states saved to disk.

analysis pipeline: query, source reconstruction, and AST/clus-
tering.

3.4.1 �ery Stage. �e query stage is responsible for interfac-
ing with the Blackbox database and is the only stage which doesn’t
read any intermediate data from disk. �is stage uses ActiveRe-
cord, a Ruby Object-Relational Mapping, with a MySQL adapter to
make complex queries against the Blackbox database with relatively
simple and readable syntax.

�e intent of the query stage is to retrieve all events relevant
to our analysis and save them to disk, organized by project. A
project is the representation of a real BlueJ project created by a user.
Every project contains a collection of sessions, and each session
contains a sequence of events representing various actions by the
user during that session. For each project and each session within
that project, the query stage �lters all contained events and only

BRADCONF, May 2017, University of Puget Sound Chili Johnson, Robert Shelton, and Xeno Fish

Figure 6: �e �ow of data through our analysis pipeline, in-
cluding intermediate states saved to disk.

keeps events representing changes in source code as well as events
representing a�empted compilations. �e raw a�ributes of these
events are saved to disk in individual YAML �les by project, with
the structure shown in Figure 6. Source events are either complete
snapshots of source code, or code di�erences in the uni�ed di�
format. Compile events only contain a boolean indicating whether
or not the project code was successfully compiled in its current
state.

�e query stage executes a large number of database operations
on a relatively slow database server, so this stage can take quite a
while to complete. Processing a single project can involve hundreds
of foreign key lookups, each empirically requiring 100–200ms per
query. To shorten the execution time, the query stage is multi-
threaded, making use of many simultaneous database connections
to perform queries in parallel. Even with the parallelism, the query
stage can take quite a bit of time to execute. For example, the query
stage took 50 hours to process 11,000 user projects for a relatively-
simple assignment using 8 threads / simultaneous connections.

3.4.2 Source Reconstruction Stage. �e source reconstruction
stage reads in the event series produced by the query stage and
produces a time series of snapshots of the state of the source at every
successful compile. Project histories are reconstructed by traversing
the event series for each �le in the project and patching the uni�ed
di� events into a complete snapshot of the project state at any given
point in the traversal. �e project state snapshots are saved to an
output �le whenever the traversal encounters a successful compile
event. �e �nal output of this stage is a collection of �les each
containing the series of project snapshots taken at each successful
compile event.

3.4.3 AST Generation and Clustering. �e �nal stage of our
pipeline can be divided logically into two sub-stages with no inter-
mediate output saved to disk between the stages. �e �rst stage is
responsible for converting the saved series of project states from
the previous stage into a series of abstract syntax trees. �e second
stage is responsible for clustering the converted project states as
well as tracing each student’s path through the di�erent clusters of
states.

�e �rst stage calls upon a small Java utility to convert each of
the input source states into a series of abstract syntax trees. As these
trees are read back into our Ruby environment, their coordinates
are calculated using the naı̈ve method described in section 3.2.2.
Once all syntax trees have been converted to coordinates, the trees
are passed to the second stage.

�e second stage uses the agglomerative clustering algorithm to
generate a hierarchical similarity tree of all project states. �is tree
is then cut at various levels (see Figure 4) to produce various sizes
of sets of project state clusters. For each set of project state clusters,
we use information about each student’s temporal path through
each of their project states to generate a digraph (see Figure 1)
with edges weighted by the number of times a student made any
particular state transition.

Finally these digraphs are converted to the Graphviz DOT graph
description language, and then converted into PDF �les using the
Graphviz utility.

4 RESULTS & ANALYSIS
�e biggest problem we discovered towards the end of this project
was the runtime of the agglomerative clustering algorithm we had
selected to cluster the states of student code. We already knew the
algorithm was O(n3), but when we actually started running the
code it became apparent that we had underestimated what runtime
we would actually be cubing in that equation. We had pulled a li�le
over 11,000 projects for the ”Auction” assignment detailed in the
BlueJ textbook, but running our code on just 100 of those took just
over two hours. �is lead to an equation for runtime looking like
this:

f (100) = 2 hours,
11000/100 = 110,

1103 = 1, 331, 000,
2 hours ⇤ 1, 331, 000 = 2, 662, 000 hours,

= 303 years.

Needless to say we didn’t exactly have 303 years to run this
program. In fact, we had about a week, so we came to the realization
that we needed to pick a smaller dataset to run on. We chose 300
projects, which was about as big as we could get without leaving
instructions for our grandchildren to handle the results.

Our algorithm let us choose how many clusters we wanted to
view for a given project. �is produced a series of PDF �les in
between the bounds we selected for the number of clusters. For the
300 project run, we looked at all series between 2 and 40 clusters.
Some of the lower numbers of clusters weren’t exactly useful, be-
cause the agglomerative clustering algorithm shows only outliers
from the most common path. At the low levels the extreme outliers
are basically only the students that saved the wrong project under
this name. �is means that the more clusters there are, the more
compiles we see come out of the one big cluster.

First o� we can see the far outlier clusters in the 21 cluster graph
in ”M” and in the 36 cluster graph in ”N” and ”W.” �e large cluster
”S” that appears in the 21 cluster graph has over 1300 compiles in it,
where as that same large base cluster ”BF” in the 35 cluster graph

Visualizing Novice Approaches to Programming BRADCONF, May 2017, University of Puget Sound

S 1353

B

1

O

2

V

10 J

1

L

2

Q

5

P

1

R

1

T

1

1

U 7

C

1

1

D 2

G

1

1

9

F

1

4

E

1

1

1

5

K

1

1

1

75

H

11

3

I

1

3

4

11

1

23

M 3

N 14

1

13

1

39

1

107

11

51

Figure 7: �is graph has one large cluster, (S), containing the
majority of the compiles.

BF 535

A

1

BI

3 C

1

D

1

BH

2BJ

25

BG

16

BE

3

BC

1

1

155

B

1

H

1

BD

6

3 V

1

2

2

F

G

1

1

BB 49

I

1 1

1

P 5

J

1

1

K

1

1

L 2

Q

1

Y

1

9

O

1

4

M

1

1

1

N 2

5

U

1

1

1

73

R

1 1

3

S 3

1

T 4

3

1 1

159

BA

5

11

1

23

2

6

1

1

1

185

14

1

W 3

X 14

1

1

13

7

210

3

129

10

Z 39

1

6

3 1

64

1

1

107

Figure 8: Here the one large cluster in the previous graph
has been extended into multiple (BI, BJ, BE, BH, BG).

has been extruded into several other signi�cant clusters ”BI” ”BJ”
”BE” ”BH” and ”BG.”�ese clusters represent more speci�c looks
at how students proceed through the assignment. Due to the way
we calculate the distance between states, o�en these transitions
between clusters represent the addition of a newmethod becausewe
heavily weight that function towards class and method declarations.
�e framework we created would allow for di�erent weightings if
future researchers wanted to instead look at creation of variables
or method calls more closely.

J 4

A

1

K 3770

C

1

D

1

L

1

G

2

H

1

M

11

4

E 8

1

14 1

F

2

2

1

6

I 12

1

7

Figure 9: Book Exercise, 12 Clusters. �is shows how the
majority of student compiles appear in the start state, ”K”.

n each of these digraphs, the group�s progression through the
code is represented by a few di�erent pieces. �e arrows from a
node back to itself are the number of times a student compiled in
a state that �t in that cluster, and the arrows in between clusters
show us the number of students that moved between a state in
one cluster and a state in another. It is important to note that
there is no representation of time in this graph. We broke the
data down this way in order to give equal space to a student who
compiled only a few times while making large edits to their code
and a student who compiled many times but made smaller edits.
Both of these hypothetical students would see progression through
various clusters, even if they took more time to make it in between
them. �is leaves us with a collection of di�erent series of student
progressions. �ey all start in a large cluster, representing the
starter code provided by the book. Because the agglomerative
clustering algorithm focuses on outliers, the �rst end states we
see are the ones that are vastly di�erent from the starter code.
For example, a student in a cluster like �K� might have added
numerous additional methods to their code that weren�t required
by the book but may have been required by a speci�c teacher or that
they decided to add for their own personal education or use. In a
simpler exercise like �Book Exercise� from the BlueJ textbook, even
though the factoring of student code is more straightforward than
it might be in the more complicated �Auction,� it is easier to see
the clear diverging paths that students took. In (�gure number here
for book 13), we can see a large collection of students beginning in
cluster �K� with the starter code provided by the textbook.

class Book
{

// The fields.
private String author;
private String title;

/**
* Set the author and title fields when this object
* is constructed.
*/
public Book(String bookAuthor, String bookTitle)
{

author = bookAuthor;
title = bookTitle;

BRADCONF, May 2017, University of Puget Sound Chili Johnson, Robert Shelton, and Xeno Fish

}

// Add the methods here ...
}

�en in cluster ”M” the one student that has arrived in this cluster
has added a few other methods and �elds to their code.

class Book
{

// The fields.
private String author;
private String title;
private int pages;
private String refNumber;

/**
* Set the author and title fields when this object
* is constructed.
*/
public Book(String bookAuthor, String bookTitle)
{

author = bookAuthor;
title = bookTitle;
pages = 0;
refNumber = � �;

}

// Add the methods here ...
public void getAuthor()
{

String author;
}

public void getTitle()
{

String title;
}

�en at the end of the path that student took, they arrive in cluster
”A” where they have added and �eshed out additional methods even
more.

public void printDetails()
{

if(refNumber.length() > 0)
{

System.out.println(�title: � + �author � + pages
+ � refNumber �

+ �borrowed. �);
}
else
{

System.out.println(�title: � + �author � + pages
+ � refNumber �

+ �borrowed. �);
}

}

public void setRefNumber (String ref)
{

if(ref.length()>=3)
{

refNumber = ref;
}
else
{

System.out.println(�Error.�);
}

}

5 DISCUSSION
We took a di�erent approach to trying to extract meaning from
the BlueJ data than the previous researchers investigating novice
programmers. While we didn’t achieve the same kind of results,
we were not trying to. As they were trying to crunch raw data
and achieve metrics, our unique clustering approach was trying
to group code, something very di�erent. We a�empted to extract
a more intuitive structure of student movement and development
without combing the data for speci�c instances or using our own
personally devised approximations of student code. We feel this
visualization tool would be useful in showing how students tackle
a problem and move through the solution space.

�ese di�erences in approach highlight just how li�le we know
about novice computer science as a whole. �e mind uninitiated in
computer science is an interesting thing. As computer scientists,
we have already trained our brains to think in the common and
well-trodden pathways; it is hard for us to imagine not to use them.
�ough our �eld de�ned and paved the way for data sciences in
every other �eld, we have yet to really solve the issue of developing
be�er data for pedagogical uses.�e BlueJ database in terms of size
and breadth is one of the larges repositories of novice programing
data collections in existence, and yet there is not much interest or
drive from those in the �eld to truly make use of it, or replicate
it’s scheme anywhere else. Computer science compared to its peer
�elds is a new one. We do not have the same kind of history of
pedagogy on par with other �elds. �at’s not to say research hasn’t
been done, nor that the BlueJ undertaking isn’t worthwhile. Great
strides have been made in recent years in the terms of researching
novice programmers, however we have not bee able to truly apply
great data science to unveil their mysteries. It is of our opinion that
such an endeavour to create an equally sized and more accessible
database for easier collaboration amongst computer scientists. It is
unclear to us why BlueJ appears so unpopular, although we feel the
accessibility of the data could be at fault. �e size and scope of the
BlueJ blackbox database schema is truly incomprehensible at �rst
glance[1]. Although the so�ware distribution and accumulation is
expertly handled, massaging of the data or certain data sets such
that they were in a more readily available and manipulable format
might prove useful to researchers working in the subject.

6 FUTUREWORK
Onemajor area of possible future work is in data collection and data
�ltering. By the nature of our tool in its current state, the output
it produces only visualizes student paths which stray the farthest
from the global trends, the outliers of any assignment. Creating
an scheme to reject outlier states before they are clustered would

Visualizing Novice Approaches to Programming BRADCONF, May 2017, University of Puget Sound

allow researchers to more easily identify popular paths through
an assignment’s solution space. Removing outliers before the clus-
tering stage would make the visualizations produced show higher
volumes of movement between key states, unlike the single-student
paths shown on Figure 13 for example.

Outlier rejection presents a signi�cant challenge because any
quantitative outlier rejection scheme will involve human knowl-
edge of the assignment, and likely an arbitrary threshold. One
approach could be to analyze the distribution of all states and reject
those which are d deviations away from the mean. Event his simple
scheme however, requires a human to assess how the assignment’s
typical solutions are transformed by the chosen coordinate transfor-
mation function, and what an acceptable “distance” in state space
is. �e distribution of states is also highly dependent on the coordi-
nate transformation function as well, so the scheme for rejecting
outliers using functions which take into account the number of
method declarations will likely be much di�erent than schemes
using coordinate transformations which do not take declarations
into account.

�e coordinate transformation function itself (see section 3.2.2)
presents another entry point for possible future work. �e coordi-
nate transformation we created used a 5-dimensional space, with a
dimension for class declarations, method declarations, method calls,
variable declarations, and assignment statements. However, this
can be easily modi�ed to work in a di�erent-dimensional space, or
with di�erent program features. While our transformation function
biased our analyses to consider di�erences in code factoring, one
could swap out our function for a function with dimensions for
while and for loops, if and switch control structures, and compar-
isons to bias the analysis towards program logic rather than source
structure.

Our concept of the coordinate transformation function itself can
also be built upon. Rather than using a naı̈ve counting approach to
generating coordinates, one could look into alternative methods of
calculating the distance between two source code states. Integrating
a performant AST edit distance algorithm instead of our naı̈ve
Euclidean distance is an interesting thread to follow.

�e agglomerative clustering algorithm itself is a large weakness
of our approach in terms of execution time. Looking into a divisive
rather than agglomerative clustering algorithm may lead faster
execution time as our analysis is only concerned with the largest
state clusters.

7 CONCLUSION
We collected and abstracted student code from the BlueJ database.
We clustered and organized the result into a series of state-based-
diagrams informing the movement of the students. We explored
the possibilities of code abstraction and visualization. �e BlueJ
blackbox database is a powerful collection of student data, perhaps
the most powerful one in existence. �e possibilities for illustrating
and determining the behaviors of novice students from it is seem-
ingly endless. Alas so much of its potential is untapped.We made a
noble a�empt to si� through that data and produce a coherent map-
ping of student progress and development on a given assignment.
While we ran into our fair share of problems, our theory we believe

is sound. With more time and drive, and more selective datasets,
labeling and deciphering such student motion would be possible.

ACKNOWLEDGMENTS
�e authors would like to thank the University of Kent for providing
access to their BlueJ Blackbox database.

REFERENCES
[1] 2015. BlueJ Blackbox Data Collection Researchers’ Handbook.
[2] Amjad Altadmri and Neil C.C. Brown. 2015. 37 Million Compilations: Investigat-

ing Novice Programming Mistakes in Large-Scale Student Data. In Proceedings of
the 46th ACM Technical Symposium on Computer Science Education (SIGCSE ’15).
ACM, New York, NY, USA, 522–527. h�ps://doi.org/10.1145/2676723.2677258

[3] David J. Barnes and Michael Kolling. 2008. Objects First With Java: A Practical
Introduction Using BlueJ (4 ed.). Prentice Hall Press, Upper Saddle River, NJ,
USA.

[4] David Hovemeyer, Arto Hellas, Andrew Petersen, and Jaime Spacco. 2016.
Control-Flow-Only Abstract Syntax Trees for Analyzing Students’ Program-
ming Progress. In Proceedings of the 2016 ACM Conference on International
Computing Education Research (ICER ’16). ACM, New York, NY, USA, 63–72.
h�ps://doi.org/10.1145/2960310.2960326

[5] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein.
2012. Modeling How Students Learn to Program. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education (SIGCSE ’12). ACM, New
York, NY, USA, 153–160. h�ps://doi.org/10.1145/2157136.2157182

https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1145/2960310.2960326
https://doi.org/10.1145/2157136.2157182

BRADCONF, May 2017, University of Puget Sound Chili Johnson, Robert Shelton, and Xeno Fish

A APPENDICIES
A.1 Output from book-exercise

B 8

G

1

3795

C

2

D

1

F

12

1 6

E 12

13

Figure 10: Output visualizing 369 user projects named book-exercise

L 12

A

1

J

1

3770

C

1

D

1

K

1

G

2

H

11

4

E 8

1

14 1

F

2

2

1

6

I 12

Figure 11: Output visualizing 369 user projects named book-exercise

Visualizing Novice Approaches to Programming BRADCONF, May 2017, University of Puget Sound

P 4

A

1

Q 3764

C

1

D

1

E

1

F

1

O

1

J

1 M

11

1

1

2

K

1

1

4

G 9

H

1

1

4

8

1

I

2

2

1

6

L 12

3

N

1

1

3

Figure 12: Output visualizing 369 user projects named book-exercise

BRADCONF, May 2017, University of Puget Sound Chili Johnson, Robert Shelton, and Xeno Fish

P

A

1

G

1

V 3757

C

1

D

1

E

1

F

1

H

1

I

1

J

1

K

1

Q

1

1

L

1

1

T

1

2

1

U

1

3

2

1

1

1

2

R

1

1

4

3

M

1

9

N

1

8

1

O

2

2

1

6

S 12

1

3

Figure 13: Output visualizing 369 user projects named book-exercise

Visualizing Novice Approaches to Programming BRADCONF, May 2017, University of Puget Sound

J 2

A

1

K

1

2

B

1

L

1

U

C

1

1

BA 1044

E

1

F

1

G

1

Y

26

Z

27

O

1

1

1

Q

1 5

415

H

1

1

P

1

114

7

2116

I

1

M

1

N

1

V

1

1

1

2

1

2

1

1

1

2

W

1 1

4

3

R

1

9

S

1

8

1

T

2

1

1

16

X 12

Figure 14: Output visualizing 369 user projects named book-exercise

BRADCONF, May 2017, University of Puget Sound Chili Johnson, Robert Shelton, and Xeno Fish

J 2

A

1

K

1

2

B

1

L

1

U

C

1

1

BF 377

E

1

BB

22

BE

17

Y

3

BD

1

Z

13

BA

6

BC

21

165

F

1

18

3

O

1

5

1

445

G

1

5

4

1

2

8

Q

1

247

H

1

P

1

8

8

3

8

1466

I

1

10

N

1

V

1

88

1

1

1

2

1

M 2

21

6

3

1

1

117

9

1

1

1

1

2

W

1

1

4

3

R

1

9

S

1

8

1

T

2

1

1

1

6

X 12

60

3

2

1

3

21

402

3

5

11

1

149

Figure 15: Output visualizing 369 user projects named book-exercise

	Abstract
	1 Introduction
	2 Background
	3 Method & Implementation
	3.1 Model & Terminology
	3.2 Project State
	3.3 Clustering
	3.4 Analysis Pipeline

	4 Results & Analysis
	5 Discussion
	6 Future Work
	7 Conclusion
	Acknowledgments
	References
	A Appendicies
	A.1 Output from book-exercise

