
 Name: _________________________

CSCI 291 — Spring 2023
Midterm Exam

This exam should have four pages. Feel free to write helper functions as part of any of your

solutions. Comments and type signatures are not required for full credit.
Closed book and notes. No calculators allowed or necessary.

Problem 1: [10 points]

Haskell's pure mathematical functions aren't allowed to produce any side effects. List at least two
important benefits achieved by disallowing side effects.

Problem 2: [10 points]

Given what you know about lazy evaluation, will the following expression evaluate successfully?
(That is, will it produce a value in a finite amount of time without throwing an exception or
otherwise crashing?) If not, why can’t lazy evaluation save us? If so, what does it produce and how
does lazy evaluation help?

head (map (10 `div`) [10,9..])

Problem 3: [15 points] Define the function shift. It’s similar to the scale function we wrote in
class, but instead of scaling a list of numbers so it fits in the range between 0 and 100, it should
simply shift each input number by the same amount such that the largest number becomes 100.
Feel free to use explicit recursion or not, as you prefer. You may assume the input list contains at
least one value.

> shift [10,30,20]
[80,100,90]
> shift [80,100,120]
[60,80,100]
> shift [-20, 90]
[-10,100]

Problem 4a: [15 points] The Evil Hangman assignment required that you generate a pattern of
dashes and letters given a word and the letters guessed so far. Below, define the pattern function
which takes a more general approach: It takes a Boolean-valued function and a word, and replaces
any characters that “pass the test” with dashes. For full credit, your solution should be recursive.

> pattern (=='a') "aardvark"
"--rdv-rk"
> pattern (< 'e') "aardvark"
"--r-v-rk"
> pattern ((=='e').succ) "aardvark"
"aar-vark"

Problem 4b: [15 points] Solve the same problem again, but this time define pattern without
using explicit recursion. (That is, use only built-in tools like map, filter, fold, list comprehensions,
etc.)

Problem 4c: [10 points] What type would Haskell infer for the function above? That is, what
would it report if you entered :type pattern in ghci? Try to use the same notation that Haskell
would. (Note: You can answer this question even if you weren’t able to define the function in the
previous parts.)

Problem 5: [25 points]

The questions below apply to this mysterious function. (Recall that elem is the built-in function
that tests whether an item appears in a list, and fst and snd retrieve items from tuples.)

mystery ps = foldr1 (||) group3
 where
 group1 = map fst ps
 group2 = map snd ps
 group3 = map (`elem` group1) group2

5a) If mystery is passed [("ok","good"),("bad","fine"),("good","great")],
what would be stored in the variable group1?

5b) If mystery is passed [("ok","good"),("bad","fine"),("good","great")],
what would be stored in the variable group2?

5c) What would mystery return for the input from 5a and 5b?

5d) Describe, in English, what the mystery function does in general.

