
2/5/17	

1	

ADVERSARIAL SEARCH

Today

¨  Introduce adversarial games
¨  Minimax as an optimal strategy
¨  Alpha-beta pruning
¨  Real-time decision making

2/5/17	

2	

Adversarial Games

¨  People like games!
¨  Games are fun, engaging, and hard-to-solve
¨  Games are amenable to study: precise, easy-to-

represent state space

Game pieces found in a
burial site in Southeast

Turkey. Dated about 3000
BC

“Game of Twenty squares”
discovered in a burial site in Ur.
Dated about 2550-2400 BC Backgammon is also among

one of the oldest games still
played today

Adversarial Games

¨  Two-player games have been a focus of AI as long
as computers have been around

Solved: state space
was completely
mapped out!

Checkers
Backgammon and Chess

Computers can compete at a championship level

Go
Can play at

professional level
(2015)

2/5/17	

3	

Terminology

Game Tree

¨  Two players: MAX and MIN
¨  MAX always moves first

¨  MAX wants high utility (payoff)

¨  MIN wants MAX to get low utility
(payoff)

1-ply

2/5/17	

4	

Minimax: an optimal policy

57

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3

a1
a2

a3

b1

b2

b3 c1

c2

c3 d1

d2

d3

MIN

Figure 5.2 FILES: figures/minimax.eps (Tue Nov 3 16:23:11 2009). A two-ply game tree. The
△ nodes are “MAX nodes,” in which it is MAX’s turn to move, and the ▽ nodes are “MIN nodes.” The
terminal nodes show the utility values for MAX; the other nodes are labeled with their minimax values.
MAX’s best move at the root is a1, because it leads to the state with the highest minimax value, and
MIN’s best reply is b1, because it leads to the state with the lowest minimax value.

What action should MAX take?

Minimax: an optimal policy

2/5/17	

5	

Minimax Algorithm

Minimax Example

MAX

MIN

-4 1 0 -2 -5 -1 3 -3 2

2/5/17	

6	

Minimax Example: Baby Nim

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

Properties of Minimax

¨  Minimax performs depth-first exploration of game
tree.
¤  Recall time complexity for DFS is O(bm)

¨  For chess, b ≈ 35, d ≈100 for "reasonable" games
¤  exact solution completely infeasible

¨  How can we find the exact solution faster?

2/5/17	

7	

Alpha-beta Pruning

When can we prune?

MAX node

[α,β]

utility greater
than beta

2/5/17	

8	

Alpha-beta Pruning Algorithm

Alpha-beta Example

57

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3

a1
a2

a3

b1

b2

b3 c1

c2

c3 d1

d2

d3

MIN

Figure 5.2 FILES: figures/minimax.eps (Tue Nov 3 16:23:11 2009). A two-ply game tree. The
△ nodes are “MAX nodes,” in which it is MAX’s turn to move, and the ▽ nodes are “MIN nodes.” The
terminal nodes show the utility values for MAX; the other nodes are labeled with their minimax values.
MAX’s best move at the root is a1, because it leads to the state with the highest minimax value, and
MIN’s best reply is b1, because it leads to the state with the lowest minimax value.

2/5/17	

9	

Properties of α-β

¨  Pruning does not affect final result

¨  Effectiveness affected by order in which we
examine successors

¨  Exponent reduces to m/2 or 3m/4

¨  What do you do if you don’t get to the bottom
of the tree on time?

Real-time decision making

¨  “Programming a computer for playing chess”

¨  Claude Shannon, 1950

¨  Truncate (apply cutoff test) and estimate utility

¨  Called an evaluation function

2/5/17	

10	

Real-time decision making

MINIMAX(s) =

8
<

:

UTILITY(s) if TERMINAL-TEST(s)
maxa MINIMAX(RESULT(s, a)) if PLAYER(s) = MAX
mina MINIMAX(RESULT(s, a)) if PLAYER(s) = MIN

H-MINIMAX(s,d) =

8
<

:

EVAL(s) if CUTOFF-TEST(s, d)
maxa H-MINIMAX(RESULT(s, a),d+ 1) if PLAYER(s) = MAX
mina H-MINIMAX(RESULT(s, a),d+ 1) if PLAYER(s) = MIN

1

MINIMAX(s) =

8
<

:

UTILITY(s) if TERMINAL-TEST(s)
maxa MINIMAX(RESULT(s, a)) if PLAYER(s) = MAX
mina MINIMAX(RESULT(s, a)) if PLAYER(s) = MIN

H-MINIMAX(s,d) =

8
<

:

EVAL(s) if CUTOFF-TEST(s, d)
maxa H-MINIMAX(RESULT(s, a),d+ 1) if PLAYER(s) = MAX
mina H-MINIMAX(RESULT(s, a),d+ 1) if PLAYER(s) = MIN

1

Evaluation function

¨  Estimates utility of game from truncated position
¤ Order terminal states in same manner
¤  Fast to compute
¤  For non-terminal states, correlated with the truth

¨  Weighted linear combination of features
¤  independence assumption

MINIMAX(s) =

8
<

:

UTILITY(s) if TERMINAL-TEST(s)
maxa MINIMAX(RESULT(s, a)) if PLAYER(s) = MAX
mina MINIMAX(RESULT(s, a)) if PLAYER(s) = MIN

H-MINIMAX(s,d) =

8
<

:

EVAL(s) if CUTOFF-TEST(s, d)
maxa H-MINIMAX(RESULT(s, a),d+ 1) if PLAYER(s) = MAX
mina H-MINIMAX(RESULT(s, a),d+ 1) if PLAYER(s) = MIN

EVAL(s) = w1f1(s) + . . .+ wnfn(s) =
nX

i=1

wifi(s)

1

2/5/17	

11	

Heuristic EVAL example

(b) White to move(a) White to move

Heuristic difficulties

2/5/17	

12	

Summary

¨  Minimax is an optimal strategy but requires full
traversal of game tree

¨  Alpha-beta pruning
¤ Effectively reduces branching factor

¨  In reality, probably need to use an evaluation
function

