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UNINFORMED SEARCH 

Today 

¨  Reading 
¤ Read AIMA 3.1-3.4 
 

¨  Objectives 
¤ Uninformed search 

n Formulating the search problem 
n State-space search 
n Analyze complexity of search 
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State-space search 

¨  State-space search is one of the earliest techniques 
employed in AI (~1950s) 

 

¨  Canonical examples 
¤  1850s: The 8-queens puzzle 
¤  1870s: The n-puzzle (similar to 2048 today) 
¤  1960s: Missionaries and cannibals 
 

¨  Real-life examples 
¤ Airline flights 
¤ VLSI Layout 
¤ Metabolic pathways 

State-space search 

¨  We have a rational agent. But how does the agent 
actually achieve its goal? 

 

¨  Search for a solution, i.e. a sequence of actions that 
leads from the initial state to the goal state 

 

¨  Uninformed search algorithms 
¤ Uses no information beyond problem 

¤ Assumes a discrete environment 

¤ Offline exploration 
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Step One: Formulate the search problem 

A well-defined search problem includes: 
¨  states 
¨  initial state 
¨  actions 
¨  successor function 
¨  goal test 
¨  path cost (reflects performance measure) 

Induce the state space graph 

Step One: Vacuum world 

¨  states? 
¨  initial state? 
¨  actions? 
¨  successor function? 
¨  goal test? 
¨  path cost? 

There are 8 states: all possible configuration of dirt and position of the vacuum. There are 
four actions: Left, Right, NoOp, and Suck. The successor function is just the resulting state 
after taking the action. The goal state is no dirt and the vacuum in either A or B. The path 
cost is 1 per action. 
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Step One: Path to Bucharest 

¨  states? 
¨  initial state? 
¨  actions? 
¨  successor function? 
¨  goal test? 
¨  path cost? 
¨  What does the state space graph look like? 
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

states are the cities. Initial state is Arad. Actions are to take a road leading out of the current 
city. Successor function is the destination city. The goal test is Bucharest. The path cost might be 
1 for each action or it could be the distance btw. two cities. 

Step One: 8-puzzle 

¨  states? 
¨  initial state? 
¨  actions? 
¨  successor function? 
¨  goal test? 
¨  path cost? 
¨  What does the state space look like? 
states – all possible configurations of the 8 tiles and the blank space 
actions – move the blank space UP, DOWN, LEFT, RIGHT 
path cost – a cost of 1 per action 
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Step One: 8-queens puzzle 

¨  states? 
¨  initial state? 
¨  actions? 
¨  goal test? 
¨  path cost? 
¨  What does the state space look like? 

incremental formulation: Initial state is a blank board. An action is to place a queen in the 
leftmost empty column (such that it is not in conflict with any previously placed queens) 
Complete-state formulation: Initial state is 8 queens on the board. An action is to move a 
queen. 
Note the path cost is irrelevant. We care only about the final configuration. 

Step Two: Search 

¨  Basic Algorithm 
¤  Pick a node 
¤  If not goal state 

n  expand node by generating all its successors 
n  mark node as explored 

¤  Repeat till goal found 
 

¨  Necessary data structures 
¤  frontier - nodes that were generated but not yet expanded 
¤  (explored - nodes that have been expanded) 
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Tree-search 

 

function TREE-SEARCH(problem, strategy) returns a solution or failure 
 initialize the frontier using the initial state of problem 
 loop do 
  if the frontier is empty return failure 
  node = pop from frontier according to strategy 
  if node contains goal state return solution 
  expand chosen node and add resulting nodes to frontier 
  

Search Strategies 

A search strategy specifies the order in which nodes are 
selected from the frontier to be expanded 



1/16/17	  

7	  

Breadth-first search (BFS) 

¨  Expand shallowest unexpanded node 
¨  Implementation: frontier is a FIFO queue 
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State space graph vs. Search tree 
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

State space graph 

18 Chapter 3. Solving Problems by Searching

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu
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Figure 3.6 FILES: figures/search-map.eps (Tue Nov 3 16:23:38 2009). Partial search trees for
finding a route from Arad to Bucharest. Nodes that have been expanded are shaded; nodes that have
been generated but not yet expanded are outlined in bold; nodes that have not yet been generated are
shown in faint dashed lines.

Search tree 

Node 
depth = 3 
cost    = 280 
state  = Arad 

parent, action 
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Depth-first search (DFS) 

¨  Expand deepest unexpanded node 
¨  Implementation: frontier is a LIFO queue (stack) 
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Evaluating search algorithm 

¨  Time (Big-O)  
¤ approximately the number of nodes generated (frontier 

plus explored list) 
¨  Space (Big-O) 

¤  the max # of nodes stored in memory at any time 
¨  Complete (yes/no) 

¤  If a solution exists, will we find it? 
¨  Optimal (yes/no) 

¤  If we return a solution, will it be the best/optimal 
solution, i.e. solution with lowest path cost 
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Notation 

¨  b – branching factor, i.e. max number of successors of any node 

¨  d – depth of the shallowest goal node 

¨  m – maximum length of any path in state space 

Number of nodes 
b0 = 1 node 
 
b1 nodes 
 
b2 nodes 
 
 

bd nodes 
 
 
 
 
 
 

bm nodes 

Depth 
0 
 
1 
 
2 
 
 

d 
 
 
 
 

m 

… 

… 

Analyzing BFS 

¨  Time: O(bd) 

¨  Space: O(bd) 

¨  Complete = YES if branching factor is finite 

¨  Optimal = YES if path cost is non-decreasing function 

of depth of the node 

¨  (Use when step costs are constant) 
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Analyzing DFS 

¨  Time (for Tree-Search): O(bm) 

¨  Space (for Tree-Search): O(bm) 

¨  Complete = YES, if space is finite (and no circular 
paths), NO otherwise 

¨  Optimal = NO 

Uniform-cost search 

¨  Expand node with lowest path cost 
¨  Implementation: 

¤  frontier is a priority queue ordered by path cost 
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Figure 3.15 FILES: figures/romania-subgraph.eps (Tue Nov 3 13:48:07 2009). Part of the Ro-
mania state space, selected to illustrate uniform-cost search.
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Analyzing Uniform-cost search 

¨  Let C* be the cost of the optimal solution and εbe the 
minimum step cost 

 
¨  Time: O(bC*/ε) 

¨  Space: O(bC*/ε) 
 
¨  Complete = YES if step cost exceeds epsilon 

¨  Optimal = YES 

Depth limited DFS 

¨  DFS, but with a depth limit L specified 
¤ Nodes at depth L are treated as if they have no successors 
¤ We only search down to depth L 

¨  Time? 
¤ O(bL) 

¨  Space? 
¤ O(bL) 

¨  Complete? 
¤ No, if solution is longer than L 

¨  Optimal 
¤ No, for same reasons DFS isn’t 
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Iterative deepening search (IDS) 

¨  Blends the benefits of BFS and DFS 
¤  searches in a similar order to BFS 
¤ but has the memory requirements of DFS 

¨  Will find the solution when L is the depth of the 
shallowest goal 

for L=0, 1, 2, … 
run depth-limited DFS with depth limit L 
if solution found return result 

Iterative deepening search (IDS) 
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Time complexity for IDS 

¨  L = 0:  1 
¨  L = 1:  1 + b 
¨  L = 2:  1 + b + b2 
¨  L = 3:  1 + b + b2 + b3 
¨  … 
¨  L = d:  1 + b + b2 + b3 + … + bd 
¨  Overall: 

¤  (d+1)(1) + (d)b + (d-1)b2 + (d-2)b3 + … + bd 

¤ O(bd) 

¤ Cost of the repeat of the lower levels is subsumed by the 
cost at the highest level  

Analysis of IDS 

¨  Time 
¤ O(bd) 

¨  Space 
¤ O(bd) 

¨  Complete? 
¤ Yes 

¨  Optimal? 
¤ Yes 
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Graph-search version 1 

function GRAPH-SEARCH(problem, strategy) returns a solution or failure 
 initialize the frontier using the initial state of problem 
 initialize explored set to empty   
 loop do 
  if the frontier is empty return failure 
  node = pop from frontier according to strategy 
  if node contains goal state return solution 
  if node not explored 
   add node to explored set 
   expand and add successor nodes to frontier 

Graph-search version 2 

function GRAPH-SEARCH(problem, strategy) returns a solution or failure 

 initialize the frontier using the initial state of problem 

 initialize explored set to empty   

 loop do 

  if the frontier is empty return failure 

  node = pop from frontier according to strategy 

  if node contains goal state return solution 

  add node to explored set 

  expand chosen node and add resulting nodes to frontier 
  only if not in frontier or explored set 
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Summary of Uninformed Search 

¨  Step One: Formulate the search problem 
¨  Step Two: Search 

¤ Breadth-first search (queue) 
¤ Depth-first search (stack) 
¤ Uniform cost search (priority queue) 
¤  Iterative-deepening DFS 

¨  Analyze search algorithms 
¤ Time, Space, Completeness, Optimality 
 


