
1/16/17	

1	

UNINFORMED SEARCH

Today

¨  Reading
¤ Read AIMA 3.1-3.4

¨  Objectives
¤ Uninformed search

n Formulating the search problem
n State-space search
n Analyze complexity of search

1/16/17	

2	

State-space search

¨  State-space search is one of the earliest techniques
employed in AI (~1950s)

¨  Canonical examples
¤  1850s: The 8-queens puzzle
¤  1870s: The n-puzzle (similar to 2048 today)
¤  1960s: Missionaries and cannibals

¨  Real-life examples
¤ Airline flights
¤ VLSI Layout
¤ Metabolic pathways

State-space search

¨  We have a rational agent. But how does the agent
actually achieve its goal?

¨  Search for a solution, i.e. a sequence of actions that
leads from the initial state to the goal state

¨  Uninformed search algorithms
¤ Uses no information beyond problem

¤ Assumes a discrete environment

¤ Offline exploration

1/16/17	

3	

Step One: Formulate the search problem

A well-defined search problem includes:
¨  states
¨  initial state
¨  actions
¨  successor function
¨  goal test
¨  path cost (reflects performance measure)

Induce the state space graph

Step One: Vacuum world

¨  states?
¨  initial state?
¨  actions?
¨  successor function?
¨  goal test?
¨  path cost?

There are 8 states: all possible configuration of dirt and position of the vacuum. There are
four actions: Left, Right, NoOp, and Suck. The successor function is just the resulting state
after taking the action. The goal state is no dirt and the vacuum in either A or B. The path
cost is 1 per action.

1/16/17	

4	

Step One: Path to Bucharest

¨  states?
¨  initial state?
¨  actions?
¨  successor function?
¨  goal test?
¨  path cost?
¨  What does the state space graph look like?

14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

states are the cities. Initial state is Arad. Actions are to take a road leading out of the current
city. Successor function is the destination city. The goal test is Bucharest. The path cost might be
1 for each action or it could be the distance btw. two cities.

Step One: 8-puzzle

¨  states?
¨  initial state?
¨  actions?
¨  successor function?
¨  goal test?
¨  path cost?
¨  What does the state space look like?
states – all possible configurations of the 8 tiles and the blank space
actions – move the blank space UP, DOWN, LEFT, RIGHT
path cost – a cost of 1 per action

1/16/17	

5	

Step One: 8-queens puzzle

¨  states?
¨  initial state?
¨  actions?
¨  goal test?
¨  path cost?
¨  What does the state space look like?

incremental formulation: Initial state is a blank board. An action is to place a queen in the
leftmost empty column (such that it is not in conflict with any previously placed queens)
Complete-state formulation: Initial state is 8 queens on the board. An action is to move a
queen.
Note the path cost is irrelevant. We care only about the final configuration.

Step Two: Search

¨  Basic Algorithm
¤  Pick a node
¤  If not goal state

n  expand node by generating all its successors
n  mark node as explored

¤  Repeat till goal found

¨  Necessary data structures
¤  frontier - nodes that were generated but not yet expanded
¤  (explored - nodes that have been expanded)

1/16/17	

6	

Tree-search

function TREE-SEARCH(problem, strategy) returns a solution or failure
 initialize the frontier using the initial state of problem
 loop do
 if the frontier is empty return failure
 node = pop from frontier according to strategy
 if node contains goal state return solution
 expand chosen node and add resulting nodes to frontier

Search Strategies

A search strategy specifies the order in which nodes are
selected from the frontier to be expanded

1/16/17	

7	

Breadth-first search (BFS)

¨  Expand shallowest unexpanded node
¨  Implementation: frontier is a FIFO queue

A

Z

O

S
F

RV
P

B

T D

State space graph vs. Search tree
14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

State space graph

18 Chapter 3. Solving Problems by Searching

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Lugoj AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Arad

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Figure 3.6 FILES: figures/search-map.eps (Tue Nov 3 16:23:38 2009). Partial search trees for
finding a route from Arad to Bucharest. Nodes that have been expanded are shaded; nodes that have
been generated but not yet expanded are outlined in bold; nodes that have not yet been generated are
shown in faint dashed lines.

Search tree

Node
depth = 3
cost = 280
state = Arad

parent, action

1/16/17	

8	

Depth-first search (DFS)

¨  Expand deepest unexpanded node
¨  Implementation: frontier is a LIFO queue (stack)

A

Z

O

S
F

RV
P

B

T D

Evaluating search algorithm

¨  Time (Big-O)
¤ approximately the number of nodes generated (frontier

plus explored list)
¨  Space (Big-O)

¤  the max # of nodes stored in memory at any time
¨  Complete (yes/no)

¤  If a solution exists, will we find it?
¨  Optimal (yes/no)

¤  If we return a solution, will it be the best/optimal
solution, i.e. solution with lowest path cost

1/16/17	

9	

Notation

¨  b – branching factor, i.e. max number of successors of any node

¨  d – depth of the shallowest goal node

¨  m – maximum length of any path in state space

Number of nodes
b0 = 1 node

b1 nodes

b2 nodes

bd nodes

bm nodes

Depth
0

1

2

d

m

…

…

Analyzing BFS

¨  Time: O(bd)

¨  Space: O(bd)

¨  Complete = YES if branching factor is finite

¨  Optimal = YES if path cost is non-decreasing function

of depth of the node

¨  (Use when step costs are constant)

1/16/17	

10	

Analyzing DFS

¨  Time (for Tree-Search): O(bm)

¨  Space (for Tree-Search): O(bm)

¨  Complete = YES, if space is finite (and no circular
paths), NO otherwise

¨  Optimal = NO

Uniform-cost search

¨  Expand node with lowest path cost
¨  Implementation:

¤  frontier is a priority queue ordered by path cost

23

Sibiu Fagaras

Pitesti

Rimnicu Vilcea

Bucharest

99

80

97

101

211

Figure 3.15 FILES: figures/romania-subgraph.eps (Tue Nov 3 13:48:07 2009). Part of the Ro-
mania state space, selected to illustrate uniform-cost search.

1/16/17	

11	

Analyzing Uniform-cost search

¨  Let C* be the cost of the optimal solution and εbe the
minimum step cost

¨  Time: O(bC*/ε)

¨  Space: O(bC*/ε)

¨  Complete = YES if step cost exceeds epsilon

¨  Optimal = YES

Depth limited DFS

¨  DFS, but with a depth limit L specified
¤ Nodes at depth L are treated as if they have no successors
¤ We only search down to depth L

¨  Time?
¤ O(bL)

¨  Space?
¤ O(bL)

¨  Complete?
¤ No, if solution is longer than L

¨  Optimal
¤ No, for same reasons DFS isn’t

1/16/17	

12	

Iterative deepening search (IDS)

¨  Blends the benefits of BFS and DFS
¤  searches in a similar order to BFS
¤ but has the memory requirements of DFS

¨  Will find the solution when L is the depth of the
shallowest goal

for L=0, 1, 2, …
run depth-limited DFS with depth limit L
if solution found return result

Iterative deepening search (IDS)

A

Z

O

S
F

RV
P

B

T D

1/16/17	

13	

Time complexity for IDS

¨  L = 0: 1
¨  L = 1: 1 + b
¨  L = 2: 1 + b + b2
¨  L = 3: 1 + b + b2 + b3
¨  …
¨  L = d: 1 + b + b2 + b3 + … + bd
¨  Overall:

¤  (d+1)(1) + (d)b + (d-1)b2 + (d-2)b3 + … + bd

¤ O(bd)

¤ Cost of the repeat of the lower levels is subsumed by the
cost at the highest level

Analysis of IDS

¨  Time
¤ O(bd)

¨  Space
¤ O(bd)

¨  Complete?
¤ Yes

¨  Optimal?
¤ Yes

1/16/17	

14	

Graph-search version 1

function GRAPH-SEARCH(problem, strategy) returns a solution or failure
 initialize the frontier using the initial state of problem
 initialize explored set to empty
 loop do
 if the frontier is empty return failure
 node = pop from frontier according to strategy
 if node contains goal state return solution
 if node not explored
 add node to explored set
 expand and add successor nodes to frontier

Graph-search version 2

function GRAPH-SEARCH(problem, strategy) returns a solution or failure

 initialize the frontier using the initial state of problem

 initialize explored set to empty

 loop do

 if the frontier is empty return failure

 node = pop from frontier according to strategy

 if node contains goal state return solution

 add node to explored set

 expand chosen node and add resulting nodes to frontier
 only if not in frontier or explored set

1/16/17	

15	

Summary of Uninformed Search

¨  Step One: Formulate the search problem
¨  Step Two: Search

¤ Breadth-first search (queue)
¤ Depth-first search (stack)
¤ Uniform cost search (priority queue)
¤  Iterative-deepening DFS

¨  Analyze search algorithms
¤ Time, Space, Completeness, Optimality

