1/16/17

UNINFORMED SEARCH

Today
N

71 Reading
1 Read AIMA 3.1-3.4

o1 Obijectives
& Uninformed search
m Formulating the search problem
m State-space search

m Analyze complexity of search

State-space search

State-space search is one of the earliest techniques
employed in Al (~1950s)

Canonical examples
1850s: The 8-queens puzzle
1870s: The n-puzzle (similar to 2048 today)
1960s: Missionaries and cannibals

Real-life examples
Airline flights
VLSI Layout
Metabolic pathways

State-space search

We have a rational agent. But how does the agent
actually achieve its goal?

Search for a solution, i.e. a sequence of actions that
leads from the initial state to the goal state

Uninformed search algorithms
Uses no information beyond problem
Assumes a discrete environment

Offline exploration

1/16/17

Step One: Formulate the search problem

A well-defined search problem includes:

_—

1 states

1 initial state

. = Induce the state space graph
1 actions

1 successor function

-

11 goal test

0 path cost (reflects performance measure)

o o 0O

O

Step One: Vacuum world

states? ‘C];ﬂ,, [R:].,, |;4D“

initial state?
actions? ‘Q“ﬁl,, L:] IgQD“ l@;&l L[__']“ I,_aaDn
successor function & ° > &

goal test? LQ“Q l-—:—-]
(@)

path cost?

1/16/17

Step One: Path to Bucharest

states?

initial state?
actions?

successor function?

goal test?

P ath cost? Craiova A Giurgiu Eforie

What does the state space graph look like?

Step One: 8-puzzle

states? 5 4 p ” 3
initial state?

6 ||| 1 8 8 4
actions?
successor function? 7 3 ||| 2 71l 6|l 5
goq| fesf? Start State Goal State

path cost?
What does the state space look like?

1/16/17

o o o o o d

Step One: 8-queens puzzle

states?
initial state? . ..¥.-
actions? . -¥ ..
goal test? . .

path cost? . H B By

What does the state space look like2

Step Two: Search

0 Basic Algorithm
Pick a node
If not goal state

m expand node by generating all its successors

® mark node as explored

Repeat till goal found

11 Necessary data structures
frontier - nodes that were generated but not yet expanded

(explored - nodes that have been expanded)

1/16/17

Tree-search

function TREE-SEARCH(problem, strategy) returns a solution or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty return failure
node = pop from frontier according to strategy
if node contains goal state return solution
expand chosen node and add resulting nodes to frontier

Search Strategies

A search strategy specifies the order in which nodes are
selected from the frontier to be expanded

1/16/17

Breadth-first search (BFS)

01 Expand shallowest unexpanded node

m : frontier is a FIFO queue

State space graph vs. Search tree

State space graph
L Search tree

(c) After expanding Sibiu

parent, action

depth = 3
Node cost =280
state = Arad

1/16/17

Depth-first search (DFS)

Expand deepest unexpanded node

: frontier is a LIFO queue (stack)

Evaluating search algorithm

Time (Big-O)
approximately the number of nodes generated (frontier
plus explored list)

Space (Big-O)

the max # of nodes stored in memory at any time
Complete (yes/no)

If a solution exists, will we find it2
Optimal (yes/no)

If we return a solution, will it be the best/optimal
solution, i.e. solution with lowest path cost

1/16/17

Notation

b — branching factor, i.e. max number of successors of any node
d — depth of the shallowest goal node

m — maximum length of any path in state space

Depth Number of nodes
0 b% = 1 node

1 < b'! nodes

D > < b2 nodes

d > © DT " b9 nodes

m > © < b™ nodes

Analyzing BFS

Time: O(bd)
Space: O(bd)
Complete = YES if branching factor is finite

Optimal = YES if path cost is non-decreasing function

of depth of the node

(Use when step costs are constant)

1/16/17

1/16/17

Analyzing DFS
Time (for Tree-Search): O(b™)
Space (for Tree-Search): O(bm)

Complete = YES, if space is finite (and no circular
paths), NO otherwise

Optimal = NO

Uniform-cost search

Expand node with lowest path cost

frontier is a priority queue ordered by path cost

Sibiu 99 Fagaras

Bucharest

10

Analyzing Uniform-cost search

Let C* be the cost of the optimal solution and € be the
minimum step cost

Time: O(b"/€)
Space: O(bC/€)
Complete = YES if step cost exceeds epsilon

Optimal = YES

Depth limited DFS

DFS, but with a depth limit L specified
Nodes at depth L are treated as if they have no successors
We only search down to depth L
Time?
O(bh)
Space?
O(bl)
Complete?
No, if solution is longer than L
Optimal

No, for same reasons DFS isn't

1/16/17

11

lterative deepening search (IDS)

forL=0, 1, 2, ...
run depth-limited DFS with depth limit L
if solution found return result

-1 Blends the benefits of BFS and DFS
searches in a similar order to BFS
but has the memory requirements of DFS

= Will find the solution when L is the depth of the
shallowest goal

lterative deepening search (IDS)

1/16/17

12

Time complexity for IDS

: 1

1+b

1+ b+ b2

: 1+b+b2+b3

r.r - -
I
w N - O

L=d: 1+b+b2+ b3+ ... +bd

Overall:
(d+1)(1) + (d)b + (d-1)b2 + (d-2)b3 + ... + b¢
O(b9)

Cost of the repeat of the lower levels is subsumed by the

O
O
O
O
O
O
O

cost at the highest level

Analysis of IDS

0 Time
O(b9)

o Space
O(bd)

01 Complete?
Yes

o Optimal2

Yes

1/16/17

13

Graph-search version 1

function GRAPH-SEARCH(problem, strategy) returns a solution or failure
initialize the frontier using the initial state of problem
initialize explored set to empty
loop do
if the frontier is empty return failure
node = pop from frontier according to strategy
if node contains goal state return solution
if node not explored
add node to explored set

expand and add successor nodes to frontier

Graph-search version 2

function GRAPH-SEARCH(problem, strategy) returns a solution or failure
initialize the frontier using the initial state of problem
initialize explored set to empty
loop do
if the frontier is empty return failure
node = pop from frontier according to strategy
if node contains goal state return solution
add node to explored set

expand chosen node and add resulting nodes to frontier
only if not in frontier or explored set

1/16/17

14

Summary of Uninformed Search

Step One: Formulate the search problem
Step Two: Search
Breadth-first search (queue)
Depth-first search (stack)
Uniform cost search (priority queue)
lterative-deepening DFS
Analyze search algorithms

Time, Space, Completeness, Optimality

1/16/17

15

