UNINFORMED SEARCH

Today
I I ——
= Uninformed search
o Formulating the search problem
£ State-space search

£ Analyze complexity of search

1/22/17

1/22/17

State-space search

Search for a solution, i.e. a sequence of actions that

leads from the initial state to the goal state

Uninformed search algorithms
Uses no information beyond problem
Assumes a discrete environment

Offline exploration

Step One: Formulate the search problem

A well-defined search problem includes:

—_—

states

initial state

. =~ Induce the state space graph
actions

successor function

-

goal test

path cost (reflects performance measure)

O

1/22/17

Step One: Path to Bucharest

states?

initial state?
actions?

successor function?

Urziceni

goal test?

Drobeta []

P ath cost? Craiova A Giurgiu Eforie

What does the state space graph look like2

Step One: 8-puzzle

states? 5 4] A 3
initial state?

. 6 ||| 1 8 8 4
actions?
successor function? 7 3| 2 711l 6|l 5
goql 'I‘es‘r? Start State Goal State

path cost?
What does the state space look like?

State space graph vs. Search tree

State space graph

Search tree

(c) After expanding Sibiu

parent, action

depth = 3
Node cost =280
state = Arad

Step Two: Search

o If actions are reversible, redundancy in search tree

o TreeSearch
Does not keep track of explored nodes
Infinite search tree

1 GraphSearch
Keeps track of explored nodes

Search tree limited to size of state space

1/22/17

Step Two: GraphSearch
I

Search Strategies
N

A search strategy specifies the order in which nodes are
selected from the frontier to be expanded

1/22/17

1/22/17

Breadth-first search (BFS)

0 Expand shallowest unexpanded node

0 Implementation: frontier is a FIFO queue

Breadth-first search (BFS)

1/22/17

Analyzing search algorithms

4 criteria for analyzing algorithms on board:

Notation

o b — branching factor, i.e. max number of successors of any node
0 d — depth of the shallowest goal node

0 m — maximum length of any path in state space

Depth Number of nodes
0 b% = 1 node

1 < b! nodes

D > < b2 nodes

d > @ G b¢ nodes

m > @ < b™ nodes

Analyzing BFS
I

Depth-first search (DFS)

1 Expand deepest unexpanded node

0 Implementation: frontier is a LIFO queue (stack)

1/22/17

Analyzing DFS

Uniform-cost search

01 Expand node with lowest path cost
O

frontier is a priority queue ordered by path cost

Sibiu 99 Fagaras

Bucharest

1/22/17

Uniform-cost search

Analyzing Uniform-cost search

71 Let C* be the cost of the optimal solution and € be the
minimum action cost

o Time: O(bC/€+1)
0 Space: O(bC/€ 1)
-1 Complete = YES if action cost exceeds epsilon

o Optimal = YES

1/22/17

10

1/22/17

Depth limited DFS

DFS, but with a depth limit L specified
Nodes at depth L are treated as if they have no successors
We only search down to depth L

Time?
O(b')
Space?
O(bl)
Complete?
No, if solution is longer than L
Optimal

No, for same reasons DFS isn’t

lterative deepening search (IDS)

forL=0, 1, 2, ...
run depth-limited DFS with depth limit L
if solution found return result

Blends the benefits of BFS and DFS
searches in a similar order to BFS

but has the memory requirements of DFS

Will find the solution when L is the depth of the
shallowest goal

11

1/22/17

lterative deepening search (IDS)

Time Complexity for IDS
N

12

Analysis of IDS

0 Time
O(bY)

11 Space
O(bd)

01 Complete?
Yes

o Optimal?
Yes

1/22/17

13

