SL: PUTTING IT ALL TOGETHER

Today

- Goals
 - □ Step 1: Formulating the problem
 - □ Step 2: Exploring the data
 - □ Step 3: Feature Selection
 - Step 4: Training
 - □ Step 5: Testing

The first 4 steps are not necessarily done in a strict linear progression

Overview

 $D = \{(\mathbf{x}_i, y_i) \mid i = 1, \dots, N\}$ where $f(\mathbf{x}_i) = y_i$

Step 1: Formulate the problem

- □ What quantity are you predicting?
 - real-valued, categorical, structure?
 - Changing over time?
 - Classification
 - Binary classification? Multi-class classification?
 - Singly-labeled? Multi-labeled?
 - For multi-labeled classification tasks, how correlated are the labels?

Step 1: Formulate the problem

What data do you have?

- Where to get labeled data? (Amazon mechanical turk)
- How much labeled data?
- What is the quality of the labeled data?
- Are the labels learnable given the data?
- Is the distribution of labels in the data skewed/ imbalanced?

Guiding Principles

- Unsupervised learning as a surrogate for supervised learning...is a headache. Just get the labels.
- Reproducibility
- Think of how you would justify each decision you made
- Start simple and iterate

Reducing multi-class to binary task

Multi-label Classification

- Each example can be labeled with multiple labels
 - Don't confuse this with multi-class classification!
 - Common for document classification or object recognition
- One-vs-all
- One classifier for every possible combination of labels
 - Combinatorial explosion
 - Limited training data

Step 2: Exploratory Data Analysis

- Look at the data. It's surprising how often we forget to actually do this!
- Exploratory Data Analysis (EDA) is a statistical mindset
 - Box plots, histograms, scatter plots, mean, mode, deviations
 - Can guide the modeling process by
 - give you insight into the data
 - help (in)validate your assumptions
 - detect outliers

Step 3: Feature Selection

- What features should I use?
 - Dimensionality reduction if exist time/space constraints
 - Reduce noise in the data (irrelevant or redundant features)
- Dimensionality reduction
 - Principal component analysis (PCA)
 - Singular value decomposition (SVD)
 - Canonical correlation analysis (CCA)
- Regularization
 - Use every feature but penalize classifiers that are overly complex

$$\operatorname{Error}(w) = \sum_{i=1}^{N} (y_i - h_w(x_i)) + \lambda ||w||^2$$

encourages sparse weight vectors

Other tricks

- □ Scale input features
- Transform features
 - e.g., take log
- Higher-order features
 - e.g., product of features
- Again, EDA can help guide this process

Step 4: Training

- □ Pick your classifier
 - Decision tree, perceptron, neural network, SVM, linear regression, logistic regression, random forests, ensembles, Gaussian process regression, hidden Markov models, conditional random field, Bayesian networks,...
 - Bagging or Boosting
- □ Your choice is informed by all of the previous steps
- □ Often there are parameters that must be tuned...

Ensembles of Classifiers

- An ensemble of classifiers A group of classifiers whose predictions are combined to produce one final prediction
- Benefits
 - Harder to make a wrong prediction
 - More expressive hypothesis

Boosting

- □ Learn a series of weak classifiers
- Weight each weak classifier to create a final strong classifier
- Often the weight for each classifier is proportional to its accuracy
- AdaBoost (Freund and Schapire 1995)

Bagging

- □ Short for "Bootstrap aggregating"
- □ Given training set D
 - Generate M new training sets D_i where |D_i| < |D| by sampling from D with replacement
 - This is a statistical technique known as bootstrapping
 - Train a classifier on each of the M new training sets
 - Combine output of M classifiers using averaging or voting
- Random Forests (Breimen, 2001)
 - Bagged decision trees

Cross Validation

□ K-fold cross validation

- Choose a classifier
- Tune a parameter
- Provide confidence intervals

Repeat K times:

Train on K-1 sets Test on 1 set

Step 5: Testing

- □ We have a final hypothesis
- We now use our hypothesis to predict on new (unseen) examples from the test set.
 - There's no going back and tweaking the classifier based on its test set performance!

Binary Classification: Measures of Performance

□ The contingency table is given by:

	y = 1	y = 0
h = 1	TP	FP
h = 0	FN	ΤN

- **TP** is the number of true positives
- **FP** is the number of *false positives*
- **FN** is the number of *false negatives*
- TN is the number of true negatives

Binary Classification: Measures of Performance

Accuracy =
$$\frac{TP + TN}{TP + FP + TN + FN}$$

Precision = $\frac{TP}{TP + FP}$

	y = 1	y = 0
h = 1	TP	FP
h = 0	FN	ΤN

 $\text{Recall} = \frac{TP}{TP + FN}$

Contingency Table

 $F_1\text{-score} = 2 \cdot \frac{\text{Prec} \cdot \text{Recall}}{\text{Prec} + \text{Recall}}$

Binary Classification: Measures of Performance

7 + 8 15		y = 1	y = 0
Accuracy = $\frac{1}{7+8+2+3} = \frac{15}{20} = .75$	h = 1	7	3
7	h = 0	2	8
$Precision = \frac{1}{7+3} = .70$	Conti	ngency	Table
Recall $= \frac{7}{7+2} = .78$ F ₁ -score $= 2\left(\frac{.70 \cdot .78}{.70 + .78}\right) = 2\left(\frac{.546}{1.48}\right) = .74$	+ + + + +	/ + /- + /+ + /+	/ _ = ⁻ -

Multi-class Classification: Measures of performance

Evaluate each label separately using a "one-vs-all" approach

- Macro-averaging
 - Compute the measure (precision, recall, F₁) for each class
 - Average across all C classes
 - Gives equal weight to all classes
- Micro-averaging
 - Pool the TP, FP, FN, TN for all C classes
 - Compute the measure (precision, recall, F1)
 - Weighted towards performance of most likely class

	$y_c = 1$	$y_c = 0$
$h_{c} = 1$	TP _c	FP _c
$h_c = 0$	FN _c	TN _c

Regression: Measures of performance

Υ

- □ Mean-squared error
- Root mean-squared error
- Mean absolute error
- Mean absolute percentage
- □ ...

Summary

Overview

- Step 1: Formulate the problem
- Step 2: Explore the data
- Step 3: Feature Selection
- Step 4: Training
- Step 5: Testing