SUPPORT VECTOR MACHINES

Today

\square Support vector machines
\square Training and Testing
\square Modifications and improvements

Support Vector Machines (SVMs)

\square SVMs are a popular classifiers
\square SVMs are linear classifiers
\square Kernels allow for non-linear classification
\square Software Packages
\square LIBSVM (LIBLINEAR) - on the Resources page
\square SVM-Light

Which is the best decision boundary?

Support Vector Machines

What defines a hyperplane?

Classify a new instance (prediction)

$$
\begin{gathered}
D=\left\{\left(x_{i}, y_{i}\right) \mid i=1 \ldots N\right\} \\
y_{i} \in\{-1,1\}
\end{gathered}
$$

$w^{\boldsymbol{\top}} x+b=0 \quad x$ on the decision boundary $w^{\top} x+b<0 \quad x$ "below" the decision boundary $w^{\top} x+b>0 \quad x$ "above" the decision boundary

$$
h(x)=\operatorname{sign}(w \cdot x+b)
$$

Learning (Training)

Learning (Training)

Solving the Optimization Problem

$$
\min _{w, b} \quad \frac{1}{2}\|w\|^{2} \quad \text { s.t. } y_{j}\left(x_{j} \cdot w+b\right) \geq 1 \forall j
$$

\square Need to optimize a quadratic function subject to linear constraints

The solution involves constructing a dual problem where a Lagrange multiplier (a scalar) is associated with every constraint in the primary problem

Solving the Optimization Problem

Solving the Optimization Problem

\square The solution has the form:

$$
w=\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} \text { and } b=y_{i}-w \cdot x_{i} \text { for any } x_{i} \text { s.t. } \alpha_{i} \neq 0
$$

\square Each non-zero alpha indicates corresponding $\mathbf{x}_{\mathbf{i}}$ is a support vector
\square The classifying function has the form: $h(x)=\operatorname{sign}\left(\sum_{i} \alpha_{i} y_{i}\left(x_{i} \cdot x\right)+b\right)$
\square Relies on an dot product between the test point x and the support vectors x_{i}

Soft-margin Classification

\square slack variables ξ_{i} can be added to allow misclassification of difficult or noisy examples.

Still, try to minimize training set errors, and to place hyperplane "far" from each class (large margin)

How many support vectors?

Determined by alphas in optimizationTypically only a small proportion of the training data

The number of support vectors determines the run time for prediction

How fast are SVMs?

Training

- Time for training is dominated by the time for solving the underlying quadratic programming problem
- Slower than Naïve Bayes
- Non-linear SVMs are worse

Testing (Prediction)

- Fast - as long as we don't have too many support vectors

Non-linear SVMs

\square General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel" trick

The "Kernel" trick

The "Kernel" trick

Kernels

Why use kernels?
-Make non-separable problem separable.
-Map data into better representational space

Common kernels
-Linear

- Polynomial $K(x, z)=\left(1+x^{\top} z\right)^{d}$
\square Radial basis function (infinite dimensional space)

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 \sigma^{2}}
$$

Summary

Support Vector Machines (SVMs)
\square Find the maximum margin hyperplane
\square Only the support vectors needed to determine hyperplane
\square Use slack variables to allow some error
\square Use a kernel function to make non-separable data separable
\square Often among the best performing classifiers

