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SUPPORT VECTOR 
MACHINES 

Today 

¨  Support vector machines 
¨  Training and Testing 
¨  Modifications and improvements 
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Support Vector Machines (SVMs) 

¨  SVMs are a popular classifiers 
¨  SVMs are linear classifiers 

¤ Kernels allow for non-linear classification 

 
¨  Software Packages 

¤ LIBSVM (LIBLINEAR) – on the Resources page 
¤ SVM-Light 
 

Which is the best decision boundary? 

x1 

x2 
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Support vectors 

Maximize the margin 
Maximum-margin  

decision hyperplane 

Support Vector Machines 

What defines a hyperplane? 
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Classify a new instance (prediction) 
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Learning (Training) 

Solving the Optimization Problem 

¨  Need to optimize a quadratic function subject to 
linear constraints 

 

¨  The solution involves constructing a dual problem 
where a Lagrange multiplier (a scalar) is associated 
with every constraint in the primary problem 
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Solving the Optimization Problem 
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Lagrange 
multipliers 

 Dual 
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w|x+ b = 0 x on the decision boundary
w|x+ b < 0 x “below” the decision boundary
w|x+ b > 0 x “above” the decision boundary
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¨  The solution has the form: 

¨  Each non-zero alpha indicates corresponding xi is a support vector 

¨  The classifying function has the form: 
 

¨  Relies on an dot product between the test point x and the support 
vectors xi 

Solving the Optimization Problem 
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¨  slack variables ξi can be added 
to allow misclassification of 
difficult or noisy examples. 

¨  Still, try to minimize training set 
errors, and to place hyperplane 
“far” from each class (large 
margin) 

ξj 

ξi 

Soft-margin Classification 

How many support vectors? 

¨  Determined by alphas in optimization 
¨  Typically only a small proportion of the training 

data 
¨  The number of support vectors determines the run 

time for prediction 
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Training 
§  Time for training is dominated by the time for solving the 

underlying quadratic programming problem 
§  Slower than Naïve Bayes 
§  Non-linear SVMs are worse 

Testing (Prediction) 
§  Fast - as long as we don’t have too many support vectors 

How fast are SVMs? 

Φ:  x → φ(x) 

Non-linear SVMs 

¨  General idea:   the original feature space can always be 
mapped to some higher-dimensional feature space 
where the training set is separable: 
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x 

The “Kernel” trick 

x 

The “Kernel” trick 
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x 

The “Kernel” trick 

Kernels 

Why use kernels? 
n Make non-separable problem separable. 
n Map data into better representational space 

 
Common kernels 

n Linear 
n Polynomial K(x,z) = (1+xTz)d 

n Radial basis function (infinite dimensional space) 
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*	  

Summary 

¨  Support Vector Machines (SVMs) 
¤ Find the maximum margin hyperplane 
¤ Only the support vectors needed to determine 

hyperplane 
¤ Use slack variables to allow some error 
¤ Use a kernel function to make non-separable data 

separable 
¤ Often among the best performing classifiers 


