

Today

- Biological Inspiration
- Types of Networks
- Training a Feed Forward Network

Motivation: Our Nervous System

The Simplest Model

Activation functions

Threshold versus "dummy" variable

 Having a threshold T is equivalent to creating a "dummy" variable with value always 1

$$\sum_{i} x_i w_i \ge T \Longrightarrow 1$$
$$\sum_{i} x_i w_i - T \ge 0 \Longrightarrow 1$$

Perceptron Network

Reduces to K independent perceptrons

Feed Forward Neural Network

Recurrent Neural Network

Expressive Power

Perceptron Network

- Can classify any data that is linearly separable
- Learns a linear decision boundary in the input space

Feed Forward Neural Network

- A single-layer network can represent any continuous function with arbitrary accuracy.
- A multi-layer network can represent discontinuous functions with arbitrary accuracy.

Training a Feed Forward Network

Backpropagation

Backpropagation

Backpropagation

Backpropagation