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PROBABILISTIC 
REASONING OVER TIME 

Today 

!  Dynamic Bayesian Networks 
!  Hidden Markov Models 
!  Exact Inference in HMMs 

! Filtering 
! Smoothing 

!  Approximate Inference in HMMs 
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Modeling uncertainty over time 

!  In a dynamic process, the value of a random 
variable changes over time 
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Figure 1: (a) A sensor that is stuck at zero for almost
two months. (b) Five days of measurements at the
end of the period of sensor failure, after which a
typical pattern of low evening activity and higher
activity at morning and afternoon rush hour begins
to appear.

DEC JAN FEB MAR APR MAY JUN
0

50

100

150

ve
h
 c

o
u
n
t

SAT SUN MON TUE WED THU FRI
0

50

100

150

ve
h
 c

o
u
n
t

SAT SUN MON TUE WED THU FRI
0

50

100

150

ve
h
 c

o
u
n
t

(a)

(b)

(c)

Figure 2: (a) A sensor with normal (periodic) ini-
tial behavior, followed by large periods of missing
data and suspicious measurements. (b) A week at
the beginning of the study showing the periodic be-
havior typical of tra±c. (c) A week in February.
Other than the missing data, these values may not
appear that unusual. However, they are not consis-
tent with the much clearer pattern seen in the first
two months. The presence of unusually large spikes
of tra±c, particularly late at night, also make these
measurements suspicious.

In this paper we present a case study of applying probabilis-
tic sensor modeling algorithms to a data set with 2263 loop
sensors involving over 100 million measurements, recorded
over seven months in Southern California. The sensor mod-
eling algorithms are based on unsupervised learning tech-
niques that simultaneously learn the regular patterns of hu-
man behavior from data as well as the occurrence of unusual
events, as described in our previous work [4, 5].

The seven months of time-series data from the 2263 loop
sensors contain a wide variety of anomalous behavior in-

cluding “stuck at zero” failures, missing data, suspiciously
high readings, and more. Figure 1 shows a sensor with a
“stuck at zero” failure, and Figure 2 shows an example of a
sensor with extended periods both of missing data and of
suspicious measurements. In this paper we focus specifically
on the challenges involved in working with large numbers of
sensors having diverse characteristics. Removing bad data
via visual inspection is not feasible given the number of sen-
sors and measurements, notwithstanding the fact that it can
be non-trivial for a human to visually distinguish good data
from bad. In Figure 2, for example, the series of measure-
ments between January and March might plausibly pass for
daily tra±c variations if we did not know the normal con-
ditions. Figure 2 also illustrates why simple thresholding
techniques are generally inadequate, due to the large vari-
ety in patterns of anomalous sensor behavior.

We begin by illustrating the results of a probabilistic model
that does not include any explicit mechanism for handling
sensor failures. As a result, the unsupervised learning algo-
rithms fail to learn a pattern of normal behavior for a large
number of sensors. We introduce a relatively simple mecha-
nism into the model to account for sensor failures, resulting
in a significant increase in the number of sensors where a
true signal can be reliably detected, as well as improved au-
tomatic identification of sensors that are so inconsistent as
to be unmodelable. The remainder of the paper illustrates
how the inferences made by the fault-tolerant model can
be used for a variety of analyses, clearly distinguishing (a)
the predictable hourly, daily, and weekly rhythms of human
behavior, (b) unusual bursts of event tra±c activity (for ex-
ample, due to sporting events or tra±c accidents), and (c)
sequences of time when the sensor is faulty. We conclude
the paper with a discussion of lessons learned from this case
study.

2. LOOP SENSOR DATA
We focus on the flow measurements obtained from each
loop sensor, defined as the cumulative count of vehicles that
passed over the sensor. The flow is reported and reset every
30 seconds, creating a time series of count data. As shown in
Figures 1 and 2, the vehicle count data is a combination of a
“true” periodic component (e.g., Figure 2(b)) and a variety
of diÆerent types of failures and noise.

We collected flow measurements between November 26, 2006
and July 7, 2007 for all of the entrance and exit ramps in
Los Angeles and Orange County. The data were downloaded
via ftp from the PeMS database [1, 7] maintained by U.C.
Berkeley in cooperation with Caltrans. Of the 2263 loop
sensors, 566 sensors reported missing (no measurement re-
ported) or zero values for the entire duration of the seven
month study. The remaining 1716 sensors reported missing
measurements 29% of the time on average. Missing data oc-
curred either when PeMS did not report a measurement due
to a faulty detector or a faulty collection system, or when
our own system was unable to access PeMS.

Aside from missing measurements and sensor failures, the
periodic structure in the data reflecting normal (predictable)
driving habits of people can be further masked by periods
of unusual activity [5]; including those caused by tra±c ac-
cidents or large events such as concerts and sporting events.

How to model a dynamic process? 

!  Dynamic Bayesian network 
! A Bayesian network composed of a series of time slices 

 
!  Each time slice contains a set of random variables 

!  Evidence variables whose value we observe (Et) 
! State variables whose value we don’t observe (Xt) 
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Examples of DBN 
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J. Hutchins et al. Probabilistic analysis of a large-scale urban traffic sensor data set. 

Examples of DBN 

EM algorithm in our implementation of the the examination
model.

2.1.3 Logistic model
Another alternative is to use a slightly di↵erent model

related to logistic regression [8]:

P (C = 1|u, p) :=
1

1 + exp(�↵̃u � �̃p)
. (3)

The click probability is not a product of probabilities any
longer, but it is still a function of the url and of the position.
The main advantage is that it ensures that the resulting
probability is always between 0 and 1; also the optimization
is much easier since it is an unconstrained and jointly convex
problem.

2.2 Cascade Model
Cascade model [8] di↵ers from the above position models

in that it considers the dependency among urls in a same
search results page and model all clicks and skips simulta-
neously in a session. It assumes that the user views search
results from top to bottom and decides whether to click each
url. Once a click is issued, documents below the clicked re-
sult are not examined regardless of the position. With the
cascade model, each document d, is either clicked with prob-
ability rd (i.e. probability that the document is relevant)
or skipped with probability (1-rd). The cascade model as-
sumes that a user who clicks never comes back, and a user
who skips always continues. A click on the i-th document
indicates: 1. the user must have decided to skip the ranks
above; 2. the user deem the i-th document relevant. The
probability of click on i-th document can thus be expressed
as:

P (Ci = 1) = ri

i�1Y

j=1

(1� rj). (4)

3. DYNAMIC BAYESIAN NETWORK
We now introduce another model which considers the re-

sults set as a whole and takes into account the influence of
the other urls while estimating the relevance of a given url
from click logs. The reason to consider the relevance of other
urls is the following: take for instance a relevant document
in position 3; if both documents in position 1 and 2 are very
relevant, it is likely that this document will have very few
clicks; on the other hand, if the two top documents are irrel-
evant, it will have a lot of clicks. A click model depending
only on the position will not be able to make the distinction
between these two cases. We extend the idea of cascade
model and propose a Dynamic Bayesian Network (DBN)
[11] to model simultaneously the relevance of all documents.

3.1 Model
The Dynamic Bayesian Network that we propose is illus-

trated in figure 1. The sequence is over the documents in
the search result list. For simplicity, we keep only the top
10 documents appearing in the first page of results, which
means that the sequence goes from 1 to 10. The variables
inside the box are defined at the session level, while those
out of the box are defined at the query level. As before, we
assume that the query is fixed.

For a given position i, in addition to the observed vari-
able Ci indicating whether there was a click or not at this

EiEi�1 Ei+1

Ci

Ai Si

au su

Figure 1: The DBN used for clicks modeling. Ci is
the the only observed variable.

position, the following hidden binary variables are defined
to model examination, perceived relevance, and actual rele-
vance, respectively:

• Ei: did the user examine the url?
• Ai: was the user attracted by the url?
• Si: was the user satisfied by the landing page?

The following equations describe the model:

Ai = 1, Ei = 1, Ci = 1 (5a)

P (Ai = 1) = au (5b)

P (Si = 1|Ci = 1) = su (5c)

Ci = 0) Si = 0 (5d)

Si = 1) Ei+1 = 0 (5e)

P (Ei+1 = 1|Ei = 1, Si = 0) = � (5f)

Ei = 0) Ei+1 = 0 (5g)

As in the examination model, we assume that there is a click
if and only if the user looked at the url and was attracted by
it (5a). The probability of being attracted depends only on
the url (5b). Similar to the cascade model, the user scans
the urls linearly from top to bottom until he decides to stop.
After the user clicks and visits the url, there is a certain
probability that he will be satisfied by this url (5c). On the
other hand, if he does not click, he will not be satisfied (5d).
Once the user is satisfied by the url he has visited, he stops
his search (5e). If the user is not satisfied by the current
result, there is a probability 1 � � that the user abandons
his search (5f) and a probability � that the user examines
the next url. In other words, � measures the perseverance of
the user4. If the user did not examine the position i, he will
not examine the subsequent positions (5g). In addition, au

and su have a beta prior. The choice of this prior is natural
because the beta distribution is conjugate to the binomial
distribution. It is clear that some of the assumptions are
not realistic and we discuss in section 8 how to extend them.
However, as shown in the experimental section, this model
can already explain accurately the observed clicks.
4it would be better to define the perseverance � at the user
level, but we simply take the same value for all users.
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Transmission Model 

Sensor (Emission) Model 
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Hidden Markov Model 

!  A Hidden Markov Model is the simplest type of 
dynamic Bayesian network 

 
!  The state is a single discrete random variable 

 

R2 R3 

U2 U3 

R1 

U1 

R0 

Exact Inference in HMMs 
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Types of Exact Inference 

!  Filtering 

!  Prediction 

!  Smoothing 

!  Most Likely Explanation 

Types of Exact Inference 
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Filtering 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 

P(Xt|e1:t) 

Deriving Forward Algorithm 
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Filtering Practice 
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Deriving The Forward Backward Algorithm 

Smoothing Practice 

Rain1 Rain2 Rain3 

U1 U2 U3 

p(R0) = <0.5, 0.5> 

Rt-1 p(Rt | Rt-1) 

T 0.7 

F 0.3 

Rt p(Ut| Rt) 

T 0.9 

F 0.2 
P(r1|u1) P(r2|u1, u2) P(r1|u1 ,u2) 

0.818 0.883 ? 
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Most Likely Explanation 

!  Find the state sequence that makes the observed 
evidence sequence most likely 

   argmax P(X1:t|e1:t) 
 
!  Recursive formulation: 

! The most likely state sequence for X1:t is the most likely 
state sequence for X1:t-1 followed by the transition to Xt 

! Equivalent to Filtering algorithm except summation 
replaced with max 

! Called the Viterbi Algorithm 

X1:t 

Approximate Inference for HMMs 
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Approximate Inference in Dynamic BNs 

!  Approximate inference in BNs 
! Direct sampling, rejection sampling, likelihood weighting 
! Gibbs sampling 
 

!  Likelihood weighting applied to a dynamic Bayesian 
network (with some modifications) is known as a 
Particle filter 

Particle Filtering 

!  Likelihood weighting fixes the evidence variables 
and samples only the non-evidence variables 

!  Introduces a weight to correct for the fact that we’re 
sampling from the prior distribution instead of the 
posterior distribution 

weight = p(e1| Parents(e1)) * p(e2| Parents(e2)) …  
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Particle Filtering 

!  Initialize 
! Draw N particles (i.e. samples) for X0 from the prior 

distribution p(X0) 
!  Propagate 

! Propagate each particle forward by sampling a value 
xt+1 from p(Xt+1 | Xt) 

!  Weight 
! Weight each particle by p(et+1|Xt+1=xt+1)  

!  Resample 
! Generate N new particles by sampling proportional to 

the weights. The new particles are unweighted 

Particle Filtering Example 
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Summary 

!  Dynamic Bayesian networks are useful when 
quantity of interest changes over time 

 
!  Hidden Markov Model is the simplest type of DBN 
 
!  Exact inference 

!  Approximate inference 


