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Modeling uncertainty over time

71 In a dynamic process, the value of a random
variable changes over time
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How to model a dynamic process?

o1 Dynamic Bayesian network

A Bayesian network composed of a series of time slices

01 Each time slice contains a set of random variables
Evidence variables whose value we observe (E,)

State variables whose value we don’t observe (X,)

3/19/17



3/19/17

Examples of DBN
N

J. Hutchins et al. Probabilistic analysis of a large-scale urban traffic sensor data set.

Examples of DBN
—

Track: Data Mining / Session: Click Models

o [;: din the uéer examine the url?
e A;: was the user attracted by the url?
‘ e S;: was the user satisfied by the landing page?

Figure 1: The DBN used for clicks modeling. C; is
the the only observed variable.
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Transmission Model
T

Sensor (Emission) Model
N
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Hidden Markov Model

11 A Hidden Markov Model is the simplest type of
dynamic Bayesian network

0 The state is a single discrete random variable

- Exact Inference in HMMs




Filtering

Types of Exact Inference

o Filtering
01 Prediction
o1 Smoothing

01 Most Likely Explanation

Types of Exact Inference

Prediction

Smoothing
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Filtering

5 568 &8

P(Xt | e] :t)

Deriving Forward Algorithm
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Filtering Practice
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Deriving The Forward Backward Algorithm

Smoothing Practice

p(Ry) = <0.5, 0.5>

Rer | P(R | Rys)
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Most Likely Explanation

Find the state sequence that makes the observed
evidence sequence most likely

argmax P(X, | e;,)
X]:t

Recursive formulation:

The most likely state sequence for X, is the most likely
state sequence for X, , followed by the transition to X,

Equivalent to Filtering algorithm except summation
replaced with max

Called the Viterbi Algorithm
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Approximate Inference in Dynamic BNs

Approximate inference in BNs
Direct sampling, rejection sampling, likelihood weighting

Gibbs sampling

Likelihood weighting applied to a dynamic Bayesian
network (with some modifications) is known as a
Particle filter

Particle Filtering

Likelihood weighting fixes the evidence variables
and samples only the non-evidence variables

Introduces a weight to correct for the fact that we're
sampling from the prior distribution instead of the
posterior distribution

weight = p(e, | Parents(e;)) * p(e,| Parents(e,)) ...
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Particle Filtering

O Initialize

Draw N particles (i.e. samples) for X, from the prior
distribution p(X,)

0 Propagate

Propagate each particle forward by sampling a value
Xe4q from p(Xiy; | X))

0 Weight
Weight each particle by p(e; | X 1=Xp1)
0 Resample

Generate N new particles by sampling proportional to
the weights. The new particles are unweighted

Particle Filtering Example

= Particles: track samples of states rather than an explicit distribution
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Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=9 (3,2)
(3,2) (3,1) (3,1) w=4 (2,3)
(3,3) (3,3) (3,3) w=4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=9 (3,2)
(2,3) (2,2) (2,2) w=4 (3,2)
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Summary

Dynamic Bayesian networks are useful when
quantity of interest changes over time

Hidden Markov Model is the simplest type of DBN
Exact inference

Approximate inference
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