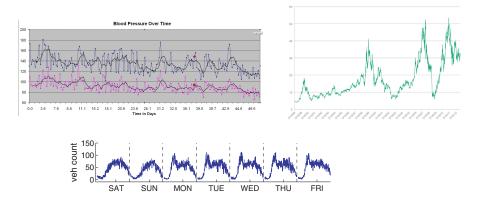
PROBABILISTIC REASONING OVER TIME

Today

- Dynamic Bayesian Networks
- Hidden Markov Models
- □ Exact Inference in HMMs
 - Filtering
 - Smoothing
- Approximate Inference in HMMs

Modeling uncertainty over time

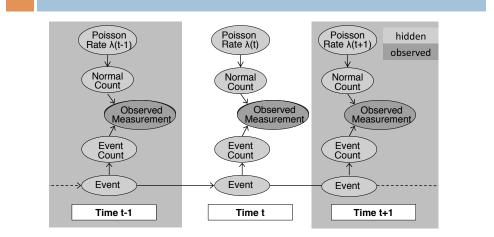
In a dynamic process, the value of a random variable changes over time



How to model a dynamic process?

- Dynamic Bayesian network
 - A Bayesian network composed of a series of time slices
- Each time slice contains a set of random variables
 - **Evidence variables** whose value we observe (E_t)
 - State variables whose value we don't observe (X_t)

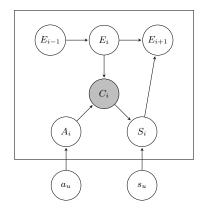
Examples of DBN



J. Hutchins et al. Probabilistic analysis of a large-scale urban traffic sensor data set.

Examples of DBN

Track: Data Mining / Session: Click Models



- E_i : did the user *examine* the url?
- A_i : was the user *attracted* by the url?
- S_i : was the user *satisfied* by the landing page?

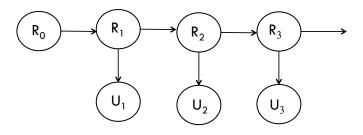
Figure 1: The DBN used for clicks modeling. C_i is the the only observed variable.

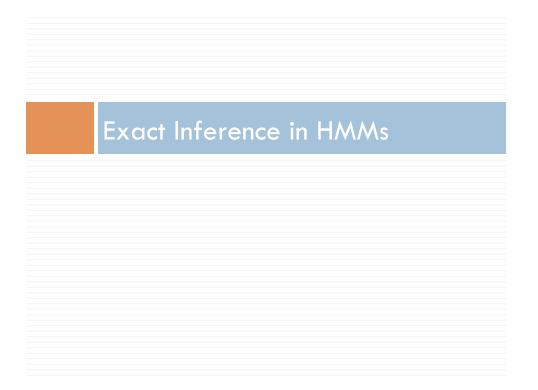
Transmission Model

Sensor (Emission) Model

Hidden Markov Model

- A Hidden Markov Model is the simplest type of dynamic Bayesian network
- □ The state is a single discrete random variable



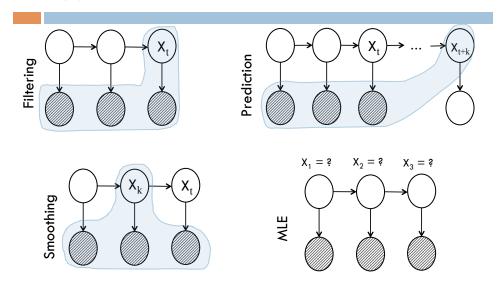


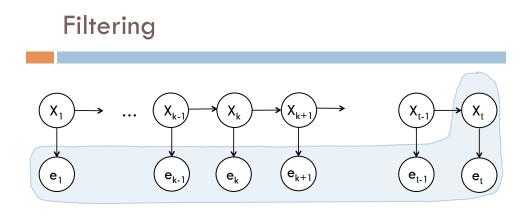
Types of Exact Inference

□ Filtering

- Prediction
- Smoothing
- Most Likely Explanation

Types of Exact Inference





 $P(X_t | e_{1:t})$

Deriving Forward Algorithm

Filtering Practice

R _{t-1}	$p(R_t R_{t-1})$	
Т	0.7	
F	0.3	

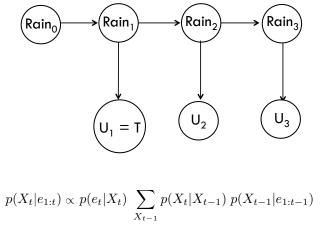
R_t

F

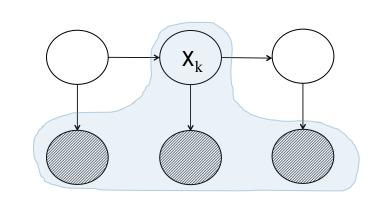
 $p(U_t | R_t)$

0.9

0.2



Smoothing



P($X_k | e_{1:t}$)

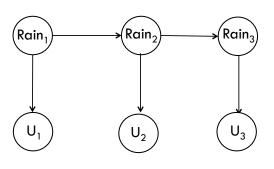
Deriving The Forward Backward Algorithm

Smoothing Practice

p(R₀) = <0.5, 0.5>

R _{t-1}	$p(R_t \mid R_{t-1})$	
Т	0.7	
F	0.3	

R _t	$p(U_t R_t)$	
Т	0.9	
F	0.2	



P(r ₁ u ₁)	$P(r_2 v_1, v_2)$	P(r ₁ u ₁ , u ₂)
0.818	0.883	Ś

Most Likely Explanation

Find the state sequence that makes the observed evidence sequence most likely

$$\operatorname{argmax}_{X_{1:t}} P(X_{1:t} | e_{1:t})$$

- □ Recursive formulation:
 - The most likely state sequence for X_{1:t} is the most likely state sequence for X_{1:t-1} followed by the transition to X_t
 - Equivalent to Filtering algorithm except summation replaced with max
 - Called the Viterbi Algorithm

Approximate Inference for HMMs

Approximate Inference in Dynamic BNs

□ Approximate inference in BNs

- Direct sampling, rejection sampling, likelihood weighting
- Gibbs sampling
- Likelihood weighting applied to a dynamic Bayesian network (with some modifications) is known as a Particle filter

Particle Filtering

- Likelihood weighting fixes the evidence variables and samples only the non-evidence variables
- Introduces a weight to correct for the fact that we're sampling from the prior distribution instead of the posterior distribution

```
weight = p(e_1 | Parents(e_1)) * p(e_2 | Parents(e_2)) \dots
```

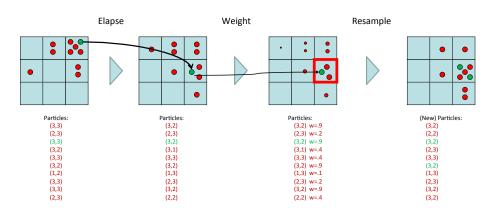
Particle Filtering

Initialize

- Draw N particles (i.e. samples) for X₀ from the prior distribution p(X₀)
- Propagate
 - Propagate each particle forward by sampling a value x_{t+1} from $p(X_{t+1} \mid X_t)$
- □ Weight
 - Weight each particle by $p(e_{t+1} | X_{t+1} = x_{t+1})$
- □ Resample
 - Generate N new particles by sampling proportional to the weights. The new particles are unweighted

Particle Filtering Example

Particles: track samples of states rather than an explicit distribution



Summary

- Dynamic Bayesian networks are useful when quantity of interest changes over time
- Hidden Markov Model is the simplest type of DBN
- Exact inference
- Approximate inference