

Today

- □ Exact inference in BN
- □ Approximate inference in BN

Inference in Bayesian Networks

- Probabilistic inference refers to the task of computing some desired probability given other known probabilities (evidence)
- Exact Inference
 - Enumeration
- Approximate Inference
 - Direct sampling
 - Rejection sampling
 - Likelihood weighting
 - Gibbs Sampling

Inference by Enumeration

Inference by Enumeration

Space complexity Largest table is exponential in number of parents

- Time complexity
 - Exponential in the number of hidden variables
 - Worst case O(dⁿ)

Variable elimination

- Dynamic programming
- Requires an ordering of variables for summing
- Exponent depends on efficiency of ordering

Approximate Inference

- Analogous to uninformed/informed search algorithms that use an incremental formulation
 - Direct sampling
 - Rejection sampling
 - Likelihood weighting
- Analogous to local search algorithms that use a complete-state formulation and make local modifications

Gibbs sampling

Approximate Inference

Sampling from a discrete distribution

Generate a number uniformly distributed between 0 and 1

Direct Sampling (no evidence)

Rejection Sampling (evidence)

Query: p(R S=true)	Cloudy			P(C = true) .50
odinpics	$\langle \rangle$	~	С	P(S=true C)
	(Sprinkler)	Rain)	Т	.10
	\prec	\searrow	F	.50
		[С	P(R=true C)
	(Wet)		Т	.80
	Grass		F	.20
		S	R	P(W=true S,R)
		Т	Т	.99
		Т	F	.90
		F	Т	.90
		F	F	.01

Likelihood Weighting

- Fixes the values for the evidence so there are no wasted samples
- □ Sample only the non-evidence variables

Likelihood Weighting

- □ Not every sample is created equal!
- Weight each sample by how likely the evidence is given the sampled values

weight = $p(e_1 | Parents(e_1)) * p(e_2 | Parents(e_2)) \dots$

Likelihood Weighting

Gibbs Sampling

- Analogous to a local search algorithm where we make local modifications to our current state
 - Initial state = random assignment of non-evidence variables
 - States = complete assignment of values to variables
 - Transition = sample a new value for each variable in turn

Gibbs Sampling

- Each step to a new state is recorded as a sample
- In the limit, the probability of being in a state is proportional to that state's posterior probability

Gibbs Sampling

Summary

- Bayesian Networks (graph + prob. distributions)
- □ Independence using graph
 - D-separation algorithm
- □ Inference
 - Exact
 - Approximate