
Java Style Guide

Formatting

• Lines of code should be no longer than 100 characters.

• Always use curly brackets when optional.

• Every statement should be on its own line. Do not put code onto one line that would be more easily
read on multiple lines.

• Use white space to delineate logical sections of code

• Auto-format your code before submitting it.

• Never use named blocks of code (e.g. using break/continue/goto to jump to a named section)

Commenting

• Write comments in complete English sentences.

• Comments should describe the intent of the code. Comments should not reveal implementation details.

• Provide a Javadoc comment at the top of every class and for every public method.

• Provide inline comments to explain non-obvious code.

• Do not overcomment or comment obvious lines of code.

• Delete any commented out code.

This is the format for the Javadoc comments:

• Classes:

/**

* Brief description of the class

* (Any extra credit)

* @author Your name

* @version Creation date

*/

• Methods:

/**

* Tell what the method does. Do not reveal implementation details.

* @param paramName1 what the parameter represents

* @param paramName2 what the parameter represents

* ...

* @return what is returned

* (An @return line is needed only if the method returns anything but void)

*/

1

Variables

• Variable names should be lowerCamelCase. Only class names are capitalized.

• Variable names should be relevant and descriptive.

• Any final variables should be UPPER CASED.

• Replace all numbers with a constant (i.e. a static final variable). The only exceptions are 0, 1, and
2 (if the meaning is clear)

• Replace all string literals (e.g. "hello") with a constant.

• Instance variables (i.e. fields) should always be private or protected.

• Instance variables (i.e. fields) should be declared at the top of the class.

• Delete unused variables.

Methods

• Method names should be lowerCamelCase. Only class names are capitalized.

• Empty methods should be deleted.

• Do not call a method multiple times. Instead, save the return value in a local variable.

• A method should do only one thing. If a method has multiple functionalities, break it up into private
methods.

2

