
CS161: Introduction to Computer Science
Homework Assignment 9

Due: Monday 4/16 by 11:59pm

Conway’s Game of Life

In this assignment, you’ll be implementing The Game of Life – not the board game but the cellular automata
formulated by mathematician John Conway in the 1970s.

The game is represented using a two-dimensional array of cells. Each cell can either be dead or alive. In the
picture below, alive cells are represented using asterisks and dead cells are represented using underscores.
Depending upon the state of its neighbors, a cell may either die or come to life at each generation.

Rules of the Game

In the game of life, you begin with a random configuration of the board. That is, you should randomly
initialize each cell to dead or alive. The game is then run for a number of iterations (i.e. “generations”).
For each iteration, you determine whether a cell is dead or alive using the following rules:

• A dead cell with exactly three living neighbors becomes a live cell

• A live cell with exactly two or three living neighbors remains a live cell

• In all other cases, the cell dies or remains dead

A cell’s neighbors are the cells that are horizontally, vertically, or diagonally adjacent. In other words, a
cell’s neighbors are the 8 other cells that it touches at edges or corners.

As the picture below shows, most cells have 8 neighbors. The blue cell at (4,2) in the first image has exactly
8 neighbors shown in yellow.

1



up a count for each neighbor determined to be alive, and return the count.

On the right-hand side, we see two cases where a Cell lies along one or two edges of the board. They
therefore have less neighbors within range (the invalid Cells are greyed out). You must avoid accessing the
invalid Cells to check whether they are living or not. Observe that all invalid Cells share the characteristic that
one or both of its coordinates are out-of-range of the dimensions of the board.

Complete the nneexxttGGeenneerraattiioonn(()) that updates the state of the bbooaarrdd by:

Declaring and instantiating a local 2D array of the same dimensions as your bbooaarrdd.a. 

Iterating over all cells in board, and for each cell, determining whether the cell should be living or dead in the
next state. When updating each Cell, you must obey the following rules:

Any living cell with fewer than two living neighbors dies (due to underpopulation or loneliness).
Any living cell with more than three living neighbors dies (due to overcrowding).
By inference, any living cell with exactly two or three living neighbors stays alive.
Any dead cell with exactly three living neighbors becomes alive! (slightly awkward reproduction).

You should use the ccoouunnttLLiivviinnggNNeeiigghhbboorrss(()) method you just implemented to get number of living neighbors for
the purpose of updating the cell in the new array.

b. 

When that is done, assign the new array to your bbooaarrdd field. This replaces your field with the new, updated
board.

c. 

2. 

Remember to test your code! At this point, you should be able to hit the "Next" button to see a single generation
(everytime you hit "Next," your nneexxttGGeenneerraattiioonn(()) method is called. You could also use the "Start" and "Stop" button to
run through continuous generations and see your board evolve! Try running the game multiple times (or hitting
"Random" to reset the board). Does everything die out? Or does it keep going for a long time? Does it eventually
"settle" into a steady state? Or alternate between two closely related states?

3. 

Although it's random, if your board always stops changing after only 4-5 generations, something is probably a bit off in
your ccoouunnttNNeeiigghhbboorrss(()) code. Our results consistently either never converges to a steady state, or takes over 20
generations to converge.

4. 

Grading

This assignment will be graded out of 20 pts:

You declare and initialize an appropriate board array. [2pt]
The CCeellll class is properly implemented [5pt]
Your iissAAlliivvee(()) method works as specified [1pt]
Your nneexxttGGeenneerraattiioonn(()) method works as specified. [5pts]

However, the cells along the border have fewer than 8 neighbors. For example, (0,0) only has 3 neighbors
and (5,8) only has 5 neighbors. In these cases, we consider the board to be “wrapped around” so that every
cell (even the ones on the edge) have 8 neighbors.

For example, consider the cell at (5,8). It’s neighbors are: (4,7), (4,8), (4,0), (5,7), (5,0), (6,7),

(6,8), (6,0). Or, consider the cell at (0,0). In a wrapped board, this cell has 8 neighbors: (8,8), (8,0),

(8,1), (0,8), (0,1), (1,8), (1,0), (1,1).

Running the Game

You should prompt the user to enter the size of the grid – i.e., the number of rows and columns. After
that, you should randomly generate and print a board. Prompt the user to hit enter to continue or “q” to
quit. If the user hits enter, you should use the rules of the game to update the board and then print the
new configuration. If you hold down the enter button, you’ll notice that the printing happens so fast that it
seems like an “animation”. The next page is an example of a single iteration of my program.

Here are some helpful hints for this assignment:

• Again, you are free to have as many (or a few) classes as you want. The design of this program is up
to you.

• You need to keep the grid intact and unchanged while you’re determining which cells should die or
come to life in the next generation. A good idea is to create a new grid for the next generation. After
you’re done filling in this new grid, you can then overwrite the old grid.

• Although it’s random, if your board always stops changing after only 4-5 generations, something is
probably wrong. My solution consistently either never converges to a steady state or takes over 20
generations to converge.

Style Guide

Before you submit your assignment, go through the checklist below and make sure your code conforms to
the style guide.

2



Checklist
All unused variables are deleted
All instance variables are used in more than one method (if not, make them local)
All instance variables are declared private
All instance variables are initialized in the constructor
Javadoc comment for all classes
All methods have Javadoc comments (except for the main method)
Good use of private methods
Proper capitalization of variables (final and non-final variables), methods, and classes
All numbers have been replaced with constants (i.e. a final variable)
Use white space to separate different sections of your code
Code is correctly indented to improve readability

See the “Style Guide” (under “Resources” on the course website) for more detailed information.

Submitting your homework assignment

You should submit your hw9 folder with your all of your code via Moodle.

3



===== Welcome to Conway's Game of Life =====
Enter the size of the grid: 20
 
Starting board configuration:
* * _ _ * * * _ _ _ * _ * * * _ * _ _ * 
_ _ _ * * _ * * * * _ * _ * * * _ * * * 
* _ * _ _ * _ _ _ _ _ _ _ * * * * * _ * 
* _ * * _ _ _ _ * _ * * * _ * * * _ * _ 
_ * _ * _ * * _ _ _ _ * * _ * * _ _ _ _ 
* _ * * _ * * * * _ * _ _ * * _ * * _ * 
_ _ _ _ * * * * _ _ * _ * _ * _ * * * * 
_ _ _ * * * * * _ _ * _ * * _ _ _ * _ _ 
_ * * * * * _ _ _ * _ _ _ * * * * * * _ 
_ _ * _ * _ * _ _ * _ _ _ * _ _ _ _ * * 
* _ * * * * _ _ _ * * _ * _ * _ * _ _ * 
* _ _ _ * _ * * * _ * * * _ * * * _ * * 
_ * * _ * * _ * * * * * * _ _ * _ _ * _ 
* * * _ _ _ _ _ * _ * _ * * _ _ * _ _ _ 
_ _ * _ _ * _ * * * _ _ _ _ * * _ * * * 
* * * * * _ _ _ * _ * _ _ _ * * _ _ _ _ 
* * _ _ * * _ * _ _ * _ _ _ * * _ * _ * 
_ * _ * _ * * _ _ _ * * * * _ * * _ * _ 
_ * _ _ _ _ _ _ _ _ * _ * * * * _ _ * * 
_ * * * * _ _ _ _ * * _ * _ _ _ _ * _ _ 
 
Press <enter> to continue or "q" to quit:
 
_ * _ _ _ _ * _ _ _ _ _ _ _ _ _ * _ _ * 
_ _ * * _ _ _ * * * * * _ _ _ _ _ _ _ _ 
* _ * _ _ * * _ _ _ _ _ _ _ _ _ _ _ _ _ 
* _ _ * _ * * _ _ _ * _ _ _ _ _ _ _ * _ 
_ _ _ _ _ * _ _ * _ _ _ _ _ _ _ _ _ * _ 
* * * * _ _ _ _ * * * _ _ _ _ _ _ _ _ * 
* _ * _ _ _ _ _ _ _ * _ * _ * _ _ _ _ * 
_ _ _ _ _ _ _ * * * * _ * _ _ _ _ _ _ * 
_ * _ _ _ _ _ * * * * _ _ _ _ * * _ _ * 
_ _ _ _ _ _ * _ * * _ _ * _ _ _ _ _ _ _ 
_ _ * _ _ _ _ _ _ _ _ _ * _ * _ * _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ * _ * _ * _ 
_ _ * _ * * _ _ _ _ _ _ _ _ _ _ _ _ * _ 
* _ _ _ * * _ _ _ _ _ _ * * _ _ * _ _ _ 
_ _ _ _ * _ _ * _ _ * * _ _ _ _ _ * * * 
_ _ _ _ _ _ _ _ _ _ * _ _ * _ _ _ * _ _ 
_ _ _ _ _ _ _ * _ _ * _ * _ _ _ _ * * * 
_ * _ _ _ * * _ _ * * _ _ _ _ _ _ _ _ _ 
_ * _ _ _ * _ _ _ _ _ _ _ _ _ * _ _ * * 
_ _ _ * * _ _ _ _ * * _ _ _ _ _ * * _ _ 
 
 
Press <enter> to continue or "q" to quit:


