(CS161: Introduction to Computer Science
Lab Assignment 11
Today you and your partner will be running empirical experiments to determine the best, worst, and average

time complexity of three different algorithms: linear search, binary search, and a median finding algorithm.
Recall that the time complexity is the number of comparisons as a function of the array size.

This lab is unusual because you will be generating plots and providing a lab report (see the Word docu-

ment in the starter code)! At the end of this lab, please submit whatever you and your partner were able to
accomplish.

Step 0: Familiarizing Yourself

Begin by looking through the PerformanceTester and ListSearcher classes. Make sure you understand
what each class is doing, what the methods do, and what the instance variables represent. If you have any
questions, call me or the lab assistant over.

Step 1: Counting Comparisons

You will notice that there is no code for actually counting the number of comparisons in the ListSearcher
class! This is your first task.

1. Add an instance variable to the ListSearch class to keep track of the number of comparisons made.

2. Modify the linearSearch(), binarySearch(), and findMedian() methods so that they count how
many comparisons are made

3. Finally, add the following accessor/mutator methods:

e public int getComparisons() - This method returns the number of comparisons made

e public void resetComparisons() - This method resets the number of comparisons to 0.

You are now able to reset, count, and get the number of comparisons made.

Step 2: Running Experiments

Now that you can count comparisons, let’s test to see if our analysis of the time complexity of linear and
binary search are actually correct.

The PerformanceTester class has three static methods: testLinearSearch, testBinarySearch, and
testMedian. This section will step you through experimenting with linear search. Once you learn how
to do this, you can go back and do the same for binary search. (Ignore the median method for now.)

Look inside the main method. You’ll see that we’re calling testLinearSearch with an array of size N=1000,
number of trials equal to 1, and unordered data. If you run the main method, you should see something
similar to the following print out:

N=1000, best=333 (expected 1), worst=333 (expected 1000), avg=333 (expected 500)

Let’s actually spend a little bit of time understanding the report we just generated above. Recall our hy-
pothesis that the best case, worst case, and average case comparisons for linear search are 1, N, and N/2,
respectively.



In the report printed out, the best, worst, and average number of comparisons are all the same because
linearSearch() was only run once. As a result, the quality of these results is not very good, and as
computer scientists, we know that results from a single experiment cannot be taken at face value! A good
scientist would repeat the experiment multiple times to get a good understanding of what’s really happening.

e Modify the input values to testLinearSearch to repeat the experiment 10 times. The report printed
out should show values closer to the expected number of comparisons.

e Open up the Word document included in the starter code and answer question Q1.

Generating Plots

It would be great to generate plots to better visualize our results. Open up your favorite spreadsheet tool,
like Sheets on Google Docs or Excel. The following example shows how to generate charts using Sheets on
Google Docs:

e In main, call testLinearSearch for N = 1000, 2000, 3000, ..., 10000 using the number of trials you
found worked best in question Q1.

e Head over to Google Docs. One of you will need a Google ID to sign in. Once in, click on the striped-
lines button on the top-left corner, and select Sheets. Next, click on the + button and it should
generate a new blank spreadsheet. Let us know if you have troubles getting this far.

e After you've got a blank sheet in front of you, copy the numbers for N, best case, worst case, and
average case as follows:

A B [} D
1 Cl Best Worst Average
2 1000 1 1000 502
3 2000 1 2000 1011
4 3000 1 3000 1507
5 4000 1 4000 2007
6 5000 2 5000 2509
7 6000 2 6000 2957
8 7000 2 6999 3550
9 8000 1 7997 4004
10 9000 2 9000 4510
11 10000 6 10000 5037.




e Double-check that all of your data is entered correctly. Then highlight your data (including the first
row containing labels). From the menu bar, click “Insert > Chart...” Click on the “Chart Types”
tab at the top and make sure there is checkmark in “Use Row 1 as Headers” and “Use Column A as
Labels”. Select the first “Line” box to generate a line plot.

Chart Editor

Recommendations | Charttypes Customisation

Sheet11A1:D11 ER

Aggregate column A
Switch rows/columns
+" Use row 1 as headers

+ Use column A as labels

Line

il

YN
il 22 i

e Click on the “Customisation” tab at the top. Give your chart a title. Scroll down to the “Axis” panel.
Label your horizontal axis “N (List Size)” and your vertical axis “Comparisons”. Click the “Insert”
button and you're all done! You can see my chart on the next page.

e Click on the chart, and on the top-right hand corner you should see a triangle button. Click on this
button, and click “Save Image”. This will download the chart as a PNG file. Open it and drag this
chart into the appropriate place in your lab report under Q2.

e That’s all there is! Go ahead and answer Q3 in your lab report. This question asks you to experiment
with linear search using ordered (i.e. sorted) data.



Linear Search

10000 — Best
— Worst
Average
7500
2
B
§ 5000
=]
O
2500
2000 4000 6000 8000 10000
N {List Size)

Step 3: Binary Search

Alright, now do this all over again but this time with binary search. No, really...do it all over again with
binary search.

Notice that testBinarySearch has no boolean flag to indicate whether it should generate ordered or un-

ordered data because binary search requires an ordered array to work correctly. Run this method for
N = 1000, 2000, 3000, . .., 10000. Generate a plot and add it to your report. Answer question Q4.

Analyzing a New Algorithm

This last section asks you to analyze a brand new algorithm: an algorithm to find the median value in an
array. The median of a set of numbers is the number that is bigger than half the values and smaller than
half the values. If the array was sorted, the median would be in the middle spot. Note: If the array has even
length, there is no unique median. In this case, either of the middle values would work.

1. Open up the ListSearcher class and read the findMedian() code. This is a very naive algorithm for
finding the median!

2. Make a guess for the best, worst, and average time complexity for this method. Record your guess in
your lab report.

3. Run experiments by calling the testMedian method in the PerformanceTester class using N =
100, 200, 300, ...,1000. If you run bigger values, it will take a long time to complete. Try to run as
many trials as possible.

4. Open your spreadsheet program, and generate another plot, with the best, worst, and average-case.
Insert the plot in your Lab Report, and answer the final question.

— Submitting your lab assignment

Submit your labi11 folder with both Java classes and your Word lab report inside. Remember to put both
of your names on the folder before you zip it. Submit via Moodle.



