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PROBABILISTIC 
REASONING OVER TIME 

Today 

¨  Reading 
¤ AIMA Chapter 15.1-15.2, 15.5 

¨  Goals 
¤ Reasoning with uncertainty over time 
¤ Types of inference 

n Filtering, prediction, smoothing, most likely explanation  
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¨  Next Wednesday March 12th 
¨  Need to find a time (1.5 hours) 

¤ Can people come in 40 minutes before class? 

¨  4 sections 
¤  short answer 
¤  true/false 
¤  longer questions that ask you to carry out some 

algorithm 

Midterm exam details 

Midterm exam coverage 

¨  Uninformed search 
¨  Informed search and heuristics 
¨  Local search 
¨  Adversarial search 
¨  CSPs 
¨  Probability (subsumed by Bayesian networks) 
¨  Bayesian networks 
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Modeling uncertainty over time 

¨  Sometimes, we want to model a dynamic process: 
the value of the random variables change over time 
¤ Price of a stock 
¤ Patient stats, e.g. blood pressure, heart rate, blood 

sugar levels 
¤ Traffic on California highways 
¤ Pollution, humidity, temperature, rain fall, storms 
¤ Sensor tracking and detection 

Modeling uncertainty over time 

¨  Tracy got a new job working at the Coop. She works 
the late shift and doesn’t get off until 2am. When she 
works the late shift, I often observe her eyes are red 
the next day. But sometimes she stays up late doing 
homework, and her eyes are red anyways. 

¨  What are questions we might be interested in asking? 
¨  How can we model this domain as a Bayesian network? 
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¨  Suppose we also know that if Tracy works the late 
shift one night she is less likely to work the late shift 
the next night. 
 

¨  How does this change the Bayesian network? 

Modeling uncertainty over time 

States and Evidence 

¨  Model a dynamic process as a series of time slices 
¨  Each time slice contains a set of random variables 

¤ We observe the value of some random variables called 
the evidence. Often denoted as Et 

¤ We don’t observe the value of some random variables 
called the state. Often denoted as Xt 
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Transition Model 

¨  We’re often interested in reasoning about the state variables 
Xt given the history X0:t-1 

¨  Markov Assumption: the state variable Xt depends on a 
bounded subset of X0:t-1 

¤  First order Markov Process: P(Xt|X0:t-1) = P(Xt|Xt-1) 

¤  Second order Markov Process: P(Xt|X0:t-1) = P(Xt|Xt-1,Xt-2) 

Xt–2 Xt–1 Xt(a)

(b)

Xt+1 Xt+2

Xt–2 Xt–1 Xt Xt+1 Xt+2

Transition Model 

¨  We’re often interested in reasoning about the state variables 
Xt given the history X0:t-1 

¨  Stationarity Assumption: the conditional distribution P(Xt|Xt-1) is 
the same for all t 
¤  Need to specify only one conditional distribution 
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Sensor (emission) model 

¨  The state variables are responsible for generating (emitting) 
the evidence variables 

¨  Sensor Markov Assumption: the evidence at time t is 
independent of every other random variable given the state at 
time t 
¤  As a result, your state should encompass all relevant information for 

specifying the evidence 

Hidden Markov Model 

¨  Hidden Markov Models involve three things: 
¤  Transition model: P(Xt|Xt-1) 
¤  Emission (evidence) model: P(Et|Xt) 
¤  Prior probability: P(X0)  

X2 Xt-1 Xt 

E2 Et-1 Et 

… X1 

E1 

X0 
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Inference Tasks 

¨  Filtering: P(Xt|e1:t) 
¤ Decision making in the here and now 

¨  Prediction: P(Xt+k|e1:t) 
¤ Trying to plan the future 

¨  Smoothing: P(Xk|e1:t) for 0 ≤ k < t 
¤ Gives a better (smoother) estimate than filtering by 

taking into account future evidence 
¨  Most Likely Explanation (MLE): argmax P(x1:t|e1:t) 

¤ e.g., speech recognition, sketch recognition 
x1:t 

Filtering: P(Xt|e1:t) 

¨  A recursive state estimation algorithm 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 
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Filtering: P(Xt|e1:t) 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 

¨  Assume we already have p(Xt-1|e1:t-1) 

Filtering: P(Xt|e1:t) 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 

¨  Update from state Xt-1 to Xt 
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Filtering: P(Xt|e1:t) 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 

¨  Then incorporate the new evidence Et 

Filtering Example 

Rain1 Rain2 Rain3 

U1 U2 U3 

p(R0) = <0.5, 0.5> 

Rt-1 p(Rt | Rt-1) 

T 0.7 

F 0.3 

Rt p(Ut| Rt) 

T 0.9 

F 0.2 
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p(X = x, Y = y|Z = z) = p(X = x|Z = z) · p(Y = y|Z = z)
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Prediction 

¨  Compute p(Xt+k | e1:t) for k > 0 
 
¨  Given the equations for filtering, can you figure out 

how to do prediction? 

Inference Tasks 

¨  Filtering: P(Xt|e1:t) 
¤ Decision making in the here and now 

¨  Prediction: P(Xt+k|e1:t) 
¤ Trying to plan the future 

¨  Smoothing: P(Xk|e1:t) for 0 ≤ k < t 
¤ Gives a better (smoother) estimate than filtering by 

taking into account future evidence 
¨  Most Likely Explanation (MLE): argmax P(x1:t|e1:t) 

¤ e.g., speech recognition, sketch recognition 
x1:t 
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The Backward Algorithm 

¨  A recursive state estimation algorithm 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 

The Backward Algorithm 

¨  Assume we have p(Xk+1|ek+2:t) 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 
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The Backward Algorithm 

¨  Incorporate evidence via p(ek+1|Xk+1) 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 

The Backward Algorithm 

¨  Update the state via p(Xk+1|Xk) 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 
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Smoothing Example 

Rain1 Rain2 Rain3 

U1 U2 U3 

p(R0) = <0.5, 0.5> 

Rt-1 p(Rt | Rt-1) 

T 0.7 

F 0.3 

Rt p(Ut| Rt) 

T 0.9 

F 0.2 
P(r1|u1) P(r2|u1, u2) P(r1|u1 ,u2) 

0.818 0.883 ? 

Most Likely Explanation 

¨  Find the state sequence that makes the observed 
evidence sequence most likely 

   argmax P(X1:t|e1:t) 
 
¨  Recursive formulation: 

¤ The most likely state sequence for X1:t is the most likely 
state sequence for X1:t-1 followed by the transition to Xt 

¤ Equivalent to Filtering algorithm except summation 
replaced with max 

¤ Called the Viterbi Algorithm 

X1:t 


