
4/1/14	

1	

NEURAL NETWORKS 2

Today

¨  Reading
¤ AIMA 18.6-18.8

¨  Goals
¤ Delta Algorithm for Perceptrons
¤ Feed-forward neural networks
¤ Backpropagation

4/1/14	

2	

A single perceptron

Output y

Input x1

Input x2

Input x3

Input x4

w1

w2

w3

w4

p(X|Y = y)
p(Y = y|X)p(X)

p(Y = y)

p(Y = y|X)p(X)

p(Y = y,X)

X

z

p(Y = y,X|Z = z) p(Z = z)

X

z

p(Y = y|Z = z)p(X|Z = z) p(Z = z)

D = {(x
i

, y
i

) | i = 1, . . . , N} where f(x
i

) = y
i

x
i

y
i

f(x
i

)

f

h 2 H

H(A) =
X

k

p(v
k

) log2

✓
1

p(v
k

)

◆

= �
X

k

p(v
k

) log2 p(v
k

)

g

✓X

i

w
i

x
i

◆

7

Node

Activation function

¨  The activation function determines if the “electrical
signal” entering the neuron is sufficient to cause it to
fire
¤ Threshold function – range is {0,1}
¤ Sigmoid function – range [0,1]
¤ Hyperbolic tangent function – range [-1,1]

p(X|Y = y)
p(Y = y|X)p(X)

p(Y = y)

p(Y = y|X)p(X)

p(Y = y,X)

X

z

p(Y = y,X|Z = z) p(Z = z)

X

z

p(Y = y|Z = z)p(X|Z = z) p(Z = z)

D = {(x
i

, y
i

) | i = 1, . . . , N} where f(x
i

) = y
i

x
i

y
i

f(x
i

)

f

h 2 H

H(A) =
X

k

p(v
k

) log2

✓
1

p(v
k

)

◆

= �
X

k

p(v
k

) log2 p(v
k

)

g

✓X

i

w
i

x
i

◆

7

210 Chapter 18. Learning from Examples

 0

 0.5

 1

-8 -6 -4 -2 0 2 4 6 8
 0

 0.5

 1

-6 -4 -2 0 2 4 6

-2 0 2 4 6

-4-2 0 2 4 6 8 10

 0
 0.2
 0.4
 0.6
 0.8

 1

x1

x2

(a) (b) (c)

Figure 18.17 FILES: . (a) The hard threshold function Threshold(z) with 0/1 output. Note that
the function is nondifferentiable at z =0. (b) The logistic function, Logistic(z) = 1

1+e−z , also known
as the sigmoid function. (c) Plot of a logistic regression hypothesis hw(x)= Logistic(w ·x) for the data
shown in Figure 18.14(b).

4/1/14	

3	

Threshold versus “dummy” variable

¨  Having a threshold T is equivalent to creating a “dummy”
variable with value always 1

Output y

Input x1

Input x2

Input x3

1

w1

w2

w3

wK+1 = -T

p(X|Y = y)
p(Y = y|X)p(X)

p(Y = y)

p(Y = y|X)p(X)

p(Y = y,X)

X

z

p(Y = y,X|Z = z) p(Z = z)

X

z

p(Y = y|Z = z)p(X|Z = z) p(Z = z)

D = {(x
i

, y
i

) | i = 1, . . . , N} where f(x
i

) = y
i

x
i

y
i

f(x
i

)

f

h 2 H

H(A) =
X

k

p(v
k

) log2

✓
1

p(v
k

)

◆

= �
X

k

p(v
k

) log2 p(v
k

)

g

✓X

i

w
i

x
i

◆

X

i

x
i

w
i

� T =) 1

X

i

x
i

w
i

� T � 0 =) 1

7

210 Chapter 18. Learning from Examples

 0

 0.5

 1

-8 -6 -4 -2 0 2 4 6 8
 0

 0.5

 1

-6 -4 -2 0 2 4 6

-2 0 2 4 6

-4-2 0 2 4 6 8 10

 0
 0.2
 0.4
 0.6
 0.8

 1

x1

x2

(a) (b) (c)

Figure 18.17 FILES: . (a) The hard threshold function Threshold(z) with 0/1 output. Note that
the function is nondifferentiable at z =0. (b) The logistic function, Logistic(z) = 1

1+e−z , also known
as the sigmoid function. (c) Plot of a logistic regression hypothesis hw(x)= Logistic(w ·x) for the data
shown in Figure 18.14(b).

Perceptrons: Linearly separable functions

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

x1

x2

x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

x1

x2

x1

x2

4/1/14	

4	

Perceptron Training rule

¨  Need an algorithm for finding a set of weights
w such that
¤ The predicted output of the neural network matches

the true output for all examples in the training set
¤ Predicts a reasonable output for inputs not in the

training set

Perceptron Training Rule

1.  Begin with randomly initialized weights
2.  Apply the perceptron to each training example

(each pass through examples is called an epoch)
3.  If it misclassifies an example modify the weights

4.  Continue until the perceptron classifies all training
examples correctly

(Derive gradient-descent update rule)

4/1/14	

5	

Beyond perceptrons

¨  Feed-forward neural network
¤  Forms a directed acyclic graph (DAG) structure
¤  Any continuous function of the inputs can be represented using a

sufficiently large hidden layer

¨  Recurrent neural network
¤  The output is fed back into the inputs
¤  Creates a dynamical system that can have “short-term memory”

hidden layers

Interesting project idea!

Backpropagation

1.  Begin with randomly initialized weights
2.  Apply the neural network to each training example

(each pass through examples is called an epoch)
3.  If it misclassifies an example modify the weights

4.  Continue until the neural network classifies all
training examples correctly

(Derive gradient-descent update rule)

4/1/14	

6	

Backpropagation

