4/1/14

NEURAL NETWORKS 2

Today
N

71 Reading
o AIMA 18.6-18.8

o Goals
1 Delta Algorithm for Perceptrons
£ Feed-forward neural networks

£ Backpropagation

A single perceptron

Input x,

Node

Output y

Activation function

05 05

0+ ol
8-6-4-202 46 8 6 -4 -2 0 2 4 6
(a) b

The activation function determines if the “electrical
signal” entering the neuron is sufficient to cause it to
fire

Threshold function — range is {0,1}

Sigmoid function — range [0,1]

Hyperbolic tangent function — range [-1,1]

4/1/14

Threshold versus “dummy” variable

Input x, w]

Input x, \

Output y
Input x3

WK+1

0 Having a threshold T is equivalent to creating a “dummy”
variable with value always 1

Zl’ﬂWZT:}l

Zl‘l’wl—TZO:>l

Perceptrons: Linearly separable functions

Xq | Xo | Xqx0r Xy
° oo 0 @
° 01 1 @
° 10 1 @
P 11 o @
° ° * i

X —T—.i
X4 X, 1

X2

4/1/14

Perceptron Training rule

Need an algorithm for finding a set of weights
w such that

The predicted output of the neural network matches
the true output for all examples in the training set

Predicts a reasonable output for inputs not in the
training set

Perceptron Training Rule

Begin with randomly initialized weights

Apply the perceptron to each training example
(each pass through examples is called an epoch)

If it misclassifies an example modify the weights

Continue until the perceptron classifies all training
examples correctly

(Derive gradient-descent update rule)

4/1/14

Beyond perceptrons

Feed-forward neural network
Forms a directed acyclic graph (DAG) structure
Any continuous function of the inputs can be represented using a
sufficiently large hidden layer
Recurrent neural network
The output is fed back into the inputs
Creates a dynamical system that can have “short-term memory”

Interesting project ideal

\/ﬁ:}lden layers

Backpropagation

Begin with randomly initialized weights

Apply the neural network to each training example
(each pass through examples is called an epoch)

If it misclassifies an example modify the weights

Continue until the neural network classifies all
training examples correctly

(Derive gradient-descent update rule)

4/1/14

Backpropagation

function BACK-PROP-LEARNING(ezamples, network) returns a neural network
inputs: ezamples, a set of examples, cach with input vector x and output vector y
network, a multilayer network with L layers, weights w; ;, activation function g
local variables: A, a vector of errors, indexed by network node

repeat
for each weight w; ; in network do
w; ; + a small random number
for each example (X, y) in examples do
/= Propagate the inputs forward to compute the outputs */
for each node i in the input layer do
a; Ty
for £=2to Ldo
for each node j in layer £ do
inj ey, wija;
a; — g(in;)
/ = Propagate deltas backward from output layer to input layer %/
for each node j in the output layer do
Aljl —g'(ing) x (y5 — aj)
for{=L—1to1do
for each node i in layer £ do
Alil - g'(in) 3, wi; Alj)
/= Update every weight in network using deltas »/
for each weight w, ; in network do
wije—wi; + a X a; X Alj]
until some stopping criterion is satisfied
return network

Figure 18.24 The back-propagation algorithm for learning in multilayer networks.

4/1/14

