

Today

\square Reading
\square AIMA Chapter 4.1-4.2, 5.1-5.2Goals
Local search algorithms

- hill-climbing search
- simulated annealing
- local beam search
- genetic algorithms
- gradient descent and Newton-Rhapson
- Introduce adversarial search

Recall the N-Queens problem

incremental
formulation

N-Queens alternative approach
complete state
formulation

Local search

The basic idea:

1. Randomly initialize (complete) state
2. If not goal state,
a. make local modification to state to generate a neighbor state OR
b. enumerate all neighbor states and choose the best
3. Repeat step 2 until goal state is found (or out of time)

Requires the ability to quickly:

- Generate a random (probably-not-optimal) state
- Evaluate the quality of a state
- Move to other states (well-defined neighborhood function)

Graph Coloring

1. Start with random coloring of nodes
2. If not goal state, change color of one node
3. Repeat 2

(a)

Local Search Algorithms

Useful when path to the goal state is irrelevant
\square Keep track of "current" state only
\square Explore nearby "neighbor" (successor) states
\square Algorithms include:
\square Hill-climbing
\square Simulated annealing
\square Local beam search
\square Genetic algorithms
\square Gradient descent (Newton-Rhapson)

Local Search Algorithms

Hill-climbing Search

\square "Like climbing Everest in thick fog with amnesia"
function Hill-Climbing (problem) returns a state that is a local maximum inputs: problem, a problem
local variables: current, a node neighbor, a node
current \leftarrow Make-Node(Initial-State[problem])
loop do
neighbor \leftarrow a highest-valued successor of current
if VALUE[neighbor] \leq VALUE[current] then return STATE[current] current \leftarrow neighbor

Hill-climbing Search: 8-queens problem

$\square h=$ number of pairs of queens that are attacking each other
$h=17$ for the above state

Hill-climbing search: 8-queens problem

\square A local minimum with $h=1$

Problems with hill-climbing?

Hill-climbing Performance

Complete - No\square Optimal - No
Time - Depend
Space - O(1)

Hill-climbing Variants

\square Stochastic Hill Climbing
\square Randomly chooses uphill successors
\square Probability of selection proportional to steepness

First-choice hill climbing
\square Choose first generated uphill successor

Random-restart hill climbing
\square Runs multiple hill-climbing searches from random initial states

Simulated annealing search

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency
function Simulated-AnNealing (problem, schedule) returns a solution state inputs: problem, a problem
schedule, a mapping from time to "temperature"
local variables: current, a node
next, a node
T, a "temperature" controlling prob. of downward steps
current \leftarrow Make-Node(Initial-State[problem])
for $t \leftarrow 1$ to ∞ do
$T \leftarrow$ schedule $[t]$
if $T=0$ then return current
next \leftarrow a randomly selected successor of current
$\Delta E \leftarrow \operatorname{Value}[n e x t]$ - Value[current]
if $\Delta E>0$ then current \leftarrow next
else current \leftarrow next only with probability $e^{\Delta E / T}$

Local Beam Search

Idea: Keep as many states in memory as possible
\square Start with k randomly generated states
\square Generate all successors of all k states

- If goal is found, stop. Else select the k best successors from the complete list of successors and repeat.

What's one possible shortcoming of this approach?

Local Beam Search

Idea: Keep as many states in memory as possible
\square Start with k randomly generated states
\square Generate all successors of all k states
\square If goal is found, stop. Else select the k best successors from the complete list of successors and repeat.

Possible problem: All k states can become concentrated in the same part of the search space

Stochastic beam search

- Choose k successors at random where the probability of selection is proportional to its objective function value

Genetic Algorithms

\square Generate a successor state by combining two parent states
\square Begin with k randomly generated states (population) represented as strings over some finite alphabet
Evaluate the fitness of each state via fitness function (higher values $=$ better state)

Repeat k times:

- Randomly select 2 states proportional to their fitness
- Randomly pick a crossover point and produce a new state
- Randomly mutate each location of the new state

Genetic Algorithms

(a)

Initial Population
(b)

Fitness Function
(c)

Selection
(d)

Cross-Over
(e)

Mutation

Fitness function: number of non-attacking pairs of queens

- $24 /(24+23+20+11)=31 \%$
$\square 23 /(24+23+20+11)=29 \%$ etc

Genetic Algorithms

Genetic Algorithms

Crossover can produce an offspring that is in an entirely different area of the search space than either parent
\square Sometimes offspring is outside of the "feasible" or "evaluable" region

Either replace entire population at each step (generational GA) or replace just a few (low fitness) members of the population (steady-state GA)

The benefit comes from having a representation where contiguous blocks are actually meaningful

Gradient-based methods

\square Gradient-based methods are similar to hill-climbing
\square Find the best direction and take it
Nevertheless, they are widely used
"Their operation is similar to a blind man walking up a hill, whose only knowledge of of the hill comes from what passes under his feet. If the hill is predictable in some fashion, he will reach the top, but it is easy to imagine confounding terrain"

- Goffe et al., 1994

Newton-Rhapson Method

\square Newton-Rhapson is a method for finding roots of a function, i.e. finding x such that $g(x)=0$

Step 1: Make an initial guess x_{0}
Step 2: Compute new point x_{1} using the update rule:

$$
x_{n+1}=x_{n}-\frac{g\left(x_{n}\right)}{g^{\prime}\left(x_{n}\right)}
$$

Intuition behind the update rule:
The tangent line at x_{0} is a linear approximation of $g(x)$ at the point x_{0}. Since the tangent line is an approximation of $g(x)$, the root of the tangent line is probably a better estimate of the root of $g(x)$ than our initial guess x_{0}. So, to find the root of the tangent line we use the formula for slope and then solve
for x_{1} :

$$
g^{\prime}\left(x_{0}\right)=\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \quad \longleftarrow \text { remember me?! }
$$

Using a bit of algebra, we solve for x_{1} which gives us the above update rule. We then iterate this process until we converge to the root of $g(x)$.

Newton-Rhapson applied to optimization

\square When we're minimizing a function we want to find the point x^{*} such that $\mathrm{f}\left(\mathrm{x}^{*}\right)<\mathrm{f}(\mathrm{x})$ for all x
\square Recall from calculus that the slope at such a point x^{*} is zero, i.e. $f^{\prime}\left(x^{*}\right)=0$
\square So we can restate the problem as follows: we want to find the point x^{*} such that $f^{\prime}\left(x^{*}\right)=0$
\square Now we can use the Newton-Rhapson method to find the root of the first derivative $f^{\prime}(x)$. The update rule in this case is:

$$
x_{n+1}=x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f^{\prime \prime}\left(x_{n}\right)}
$$

\square The function $f^{\prime \prime}(x)$ is the second derivative.
\square Ask yourself: Why does the second derivative appear in this formula?

Newton-Rhapson applied to optimization

\square In the multivariate case, the update rule looks like this:

$$
x_{n+1}=x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f^{\prime \prime}\left(x_{n}\right)} \quad x_{n+1}=x_{n}-H_{f}^{-1}\left(x_{n}\right) \nabla_{f}\left(x_{n}\right)
$$

univariate
multivariate
\square The second derivative is given by the Hessian matrix (denoted as H) which is a square matrix that contains the second-order partial derivatives
\square The first derivative is represented by the gradient (denoted using the upside down triangle)

Gradient Ascent (Descent)

\square Sometimes the Hessian is too computationally expensive to compute or it cannot be inverted
$\square \quad$ In this case, we can "replace" the second derivative with a step size constant γ

$$
x \leftarrow x+\gamma \nabla F(x)
$$

\square The gradient (the upside down triangle) gives the direction of steepest ascent. The step cost (gamma) determines how far we step in that direction.
\square For minimization, we would change the addition to subtraction (i.e. we want to move in the direction opposite to the direction of steepest ascent)
\square Some information about the step size gamma:

- The user can set the step size to any (typically positive) value
- A step size too small results in slow progress. A step size too large can overshoot the minimum/ maximum.
\square The step size can be determined using a line search (think binary search). However, make sure that the line search itself isn't computationally expensive
- The step size can change at each iteration. It doesn't have to stay the same
\square The stopping criteria: gradient sufficiently close to zero, or difference between new and old points below threshold

Gradient Ascent (Descent)

$$
\begin{aligned}
& \text { function GRADIENT-ASCENT(F, } \gamma) \text { returns solution } \\
& \qquad F F \text { COMPUTE-GRADIENT }(F) \\
& x \leftarrow \text { a randomly selected value } \\
& \text { while stopping criteria } \\
& \quad x \leftarrow x+\gamma \nabla F(x) \\
& \text { return } x
\end{aligned}
$$

Gradient Ascent (Descent)

Local search summary
\square Hill-climbing search \square Stochastic hill-climbing search - First-choice - Random restart hill-climbing \square Simulated annealing \square Local beam search - Stochastic local beam search \square Genetic algorithms \square Gradient-based methods Newton-Rhapson - Gradient ascent (descent)

