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SUPPORT VECTOR 
MACHINES 

Today 

¨  Reading 
¤ AIMA 18.9 

¨  Goals 
¤ Finish Backpropagation 
¤  Introduce support vector machines (SVMs) 
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Backpropagation 

1.  Begin with randomly initialized weights 
2.  Apply the neural network to each training example 

(each pass through examples is called an epoch) 
3.  If it misclassifies an example modify the weights 

4.  Continue until the neural network classifies all 
training examples correctly 

(Derive gradient-descent update rule) 

Backpropagation 
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Support Vector Machines (SVMs) 

¨  SVMs are probably the most popular off-the-shelf 
classifier! 

¨  Software Packages 
¤ LIBSVM (LIBLINEAR) – on the Resources page 
¤ SVM-Light 
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Support vectors 

Maximize 
margin 

Maximum 
margin  

decision 
hyperplane 

Support Vector Machines 

¨  A support vector machine (SVM) is a linear 
classifier that finds the decision boundary 
btw. two classes that is maximally far from 
any point in the training set 

 

¨  The margin is the distance from the decision 
boundary to the closest data point 

¨  The support vectors are a subset of the 
training examples that fully determine the 
decision boundary 

Basic Linear Algebra Notes (on board) 

¨  Length of a vector 
¨  Unit vector 
¨  Dot product 
¨  Hyperplane 
¨  Given this knowledge, how do we find the 

hyperplane with the maximum margin? 
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Solving the Optimization Problem 

¨  Need to optimize a quadratic function subject to linear 
constraints 

 

¨  Quadratic optimization problems are a well-known class of 
mathematical programming problem and many algorithms 
exist for solving them 

 

¨  The solution involves constructing a dual problem where a 
Lagrange multiplier (a scalar value) is associated with every 
constraint in the primary problem 
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Lagrange 
multipliers 

 Dual 
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¨  The solution has the form: 

¨  Each non-zero alpha indicates corresponding xi is a support vector 

¨  The classifying function has the form: 
 

¨  Relies on an inner product between the test point x and the support 
vectors xi 

Solving the Optimization Problem 
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8If the training data is not linearly 
separable, slack variables ξi can 
be added to allow misclassification 
of difficult or noisy examples. 

Still, try to minimize training set 
errors, and to place hyperplane 
“far” from each class (large 
margin) 

ξj 

ξi 

Soft-margin Classification 
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How many support vectors? 

¨  Determined by alphas in optimization 
¨  Typically only a small proportion of the training 

data 
¨  The number of support vectors determines the run 

time for prediction 

Training 
§  Time for training is dominated by the time for solving the 

underlying quadratic programming problem 
§  Slower than Naïve Bayes 
§  Non-linear SVMs are worse 

Testing (Prediction) 
§  Fast - as long as we don’t have too many support vectors 

How fast are SVMs? 
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Multi-label classification 

¨  SVMs are inherently two-class classifiers 
¨  Given C classes, common techniques are: 

¤ One-versus-all 
n  Train C different SVMs where each SVM learns one class versus all 

the other classes 
¤ One-versus-one 

n  Train C(C-1)/2 SVMs where each SVM learns to distinguish one 
class from another 

¨  Multi-class SVMs 
¨  Transductive SVMs 

Linear SVMs Summary 

¨  The classifier is a decision boundary (separating 
hyperplane) 

¨  Most “important” training points are support vectors 
which define the hyperplane 

¨  Quadratic optimization algorithms can identify 
which training points are support vectors (vectors 
with non-zero Lagrange multipliers) 

¨  In the dual formation and in classifying an example, 
the training points appear only inside inner products 


