SUPPORT VECTOR MACHINES

Today

\square Reading

- AIMA 18.9
\square Goals
\square Finish Backpropagation
\square Introduce support vector machines (SVMs)

Backpropagation

1. Begin with randomly initialized weights
2. Apply the neural network to each training example (each pass through examples is called an epoch)
3. If it misclassifies an example modify the weights
4. Continue until the neural network classifies all training examples correctly
(Derive gradient-descent update rule)

Backpropagation

```
function BACK-PROP-LEARNING(examples, network) returns a neural network
    inputs: examples, a set of examples, each with input vector }\mathbf{x}\mathrm{ and output vector }\mathbf{y
        network, a multilayer network with L layers, weights }\mp@subsup{w}{i,j}{}\mathrm{ , activation function g
    local variables: }\Delta\mathrm{ , a vector of errors, indexed by network node
    repeat
        for each weight wi,j in network do
            wi,j}\leftarrow\mathrm{ a small random number
            for each example (x,y) in examples do
            * Propagate the inputs forward to compute the outputs */
            or each node i in the input layer do
            a
            or \ell=2 to L do
            for each node j in layer \ell do
                    in}\mp@subsup{\mp@code{j}}{5}{\leftarrow}\mp@subsup{\sum}{i}{}\mp@subsup{w}{i,j}{}\mp@subsup{a}{i}{
                aj\leftarrowg(in
            / * Propagate deltas backward from output layer to input layer */
            for each node j in the output layer do
                \Delta[j]\leftarrow\mp@subsup{g}{}{\prime}(i\mp@subsup{n}{j}{})\times(\mp@subsup{y}{j}{}-\mp@subsup{a}{j}{})
            or}\ell=L-1\mathrm{ to }1\mathrm{ do
                for each node }i\mathrm{ in layer }\ell\mathrm{ do
                \Delta[i]\leftarrow\mp@subsup{g}{}{\prime}(i\mp@subsup{n}{i}{})\mp@subsup{\sum}{j}{}\mp@subsup{w}{i,j}{}\Delta[j]
            /* Update every weight in network using deltas */
            for each weight wi,j in network do
                wi,j\leftarroww\mp@subsup{w}{i,j}{}+\alpha\times\mp@subsup{a}{i}{}\times\Delta[j]
    until some stopping criterion is satisfied
    return network
```


Support Vector Machines (SVMs)

\square SVMs are probably the most popular off-the-shelf classifier!

Software Packages
\square LIBSVM (LIBLINEAR) - on the Resources page \square SVM-Light

Linearly Separable

x_{1}	x_{2}	x_{1} and x_{2}	
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	

x_{1}	x_{2}	x_{1} or x_{2}	
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	

Support Vector Machines

A support vector machine (SVM) is a linear classifier that finds the decision boundary btw. two classes that is maximally far from any point in the training set

- The margin is the distance from the decision boundary to the closest data point

The support vectors are a subset of the training examples that fully determine the decision boundary

Basic Linear Algebra Notes (on board)

\square Length of a vectorUnit vectorDot productHyperplane
Given this knowledge, how do we find the hyperplane with the maximum margin?

Solving the Optimization Problem

$\min _{w, b} \frac{1}{2}\|w\|^{2}$ such that $y^{(i)}\left(w^{\top} x^{(i)}+b\right) \geq 1 \quad \forall i$

- Need to optimize a quadratic function subject to linear constraints
- Quadratic optimization problems are a well-known class of mathematical programming problem and many algorithms exist for solving them
- The solution involves constructing a dual problem where a Lagrange multiplier (a scalar value) is associated with every constraint in the primary problem

Solving the Optimization Problem

$\min _{w, b} \frac{1}{2}\|w\|^{2}$ such that $y^{(i)}\left(w^{\top} x^{(i)}+b\right) \geq 1 \quad \forall i$

$$
\max _{\alpha} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} x^{(i)} x^{(j)}
$$

subject to $\alpha_{i} \geq 0$ and $\sum_{i} \alpha_{i} y^{(i)}=0$

Solving the Optimization Problem

The solution has the form:

$$
w=\sum_{i=1}^{N} \alpha_{i} y^{(i)} x^{(i)} \text { and } b=y^{(i)}-w^{\top} x^{(i)} \text { for any } x^{(i)} \text { s.t. } \alpha_{i} \neq 0
$$Each non-zero alpha indicates corresponding x_{i} is a support vector

The classifying function has the form: $g\left(x_{i}\right)=\operatorname{sign}\left(\sum_{i} \alpha_{i} y^{(i)} \sqrt{x^{(i)} x}+b\right)$
Relies on an inner product between the test point x and the support vectors x_{i}

Soft-margin Classification

If the training data is not linearly separable, slack variables ξ_{i} can be added to allow misclassification of difficult or noisy examples.

Still, try to minimize training set errors, and to place hyperplane "far" from each class (large margin)

How many support vectors?

Determined by alphas in optimization
\square Typically only a small proportion of the training data

The number of support vectors determines the run time for prediction

How fast are SVMs?

Training

- Time for training is dominated by the time for solving the underlying quadratic programming problem
- Slower than Naïve Bayes
- Non-linear SVMs are worse

Testing (Prediction)

- Fast - as long as we don't have too many support vectors

Multi-Iabel classification

SVMs are inherently two-class classifiers
Given C classes, common techniques are:
\square One-versus-all

- Train C different SVMs where each SVM learns one class versus all the other classes
\square One-versus-one
- Train C(C-1)/2 SVMs where each SVM learns to distinguish one class from another

Multi-class SVMs
Transductive SVMs

Linear SVMs Summary

The classifier is a decision boundary (separating hyperplane)

Most "important" training points are support vectors which define the hyperplane

Quadratic optimization algorithms can identify which training points are support vectors (vectors with non-zero Lagrange multipliers)

In the dual formation and in classifying an example, the training points appear only inside inner products

