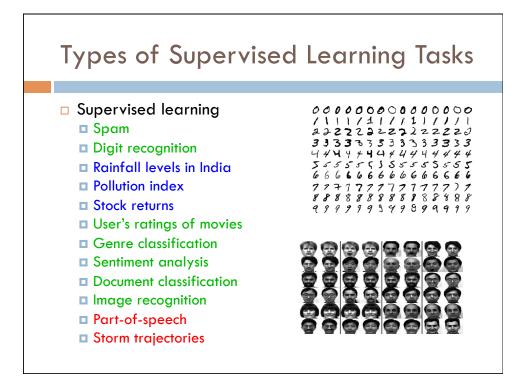
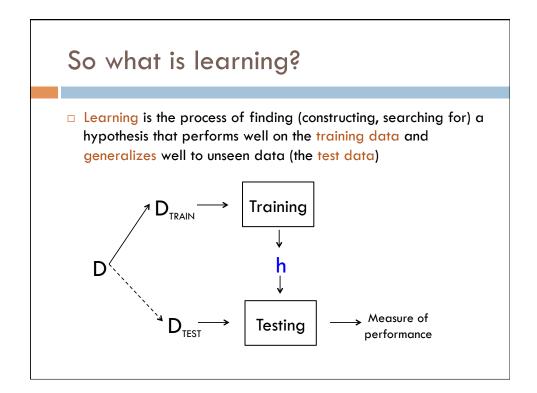
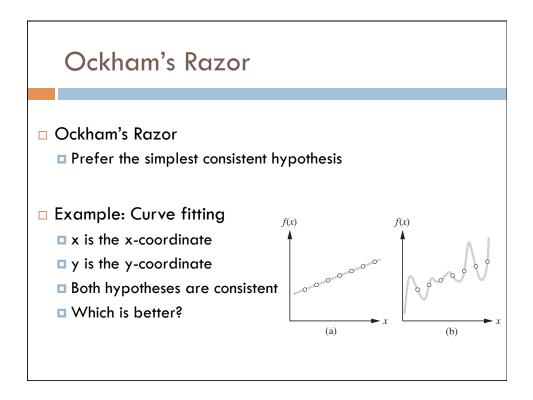


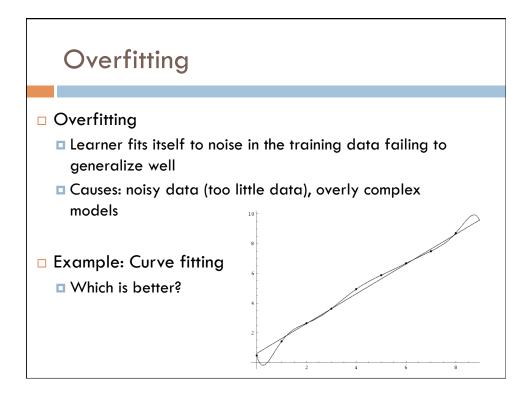
Regression

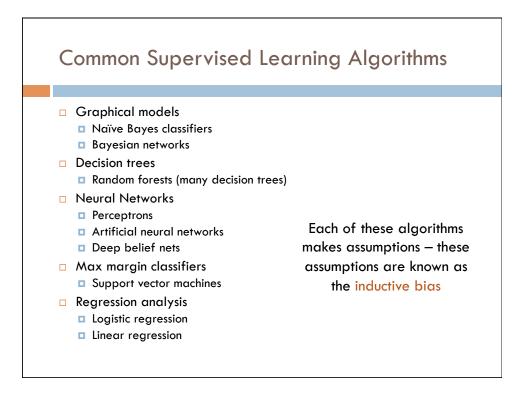
- y is a (vector of) real-valued number(s)
- e.g. price of a commodity, pollution levels, brain activity
- □ Classification
 - y is a discrete (categorical) value
 - e.g. spam or not spam, 5-star ratings
- □ Structured prediction
 - y is a structured object
 - e.g. given sentence predict parse tree, given words in a sentence predict POS tags

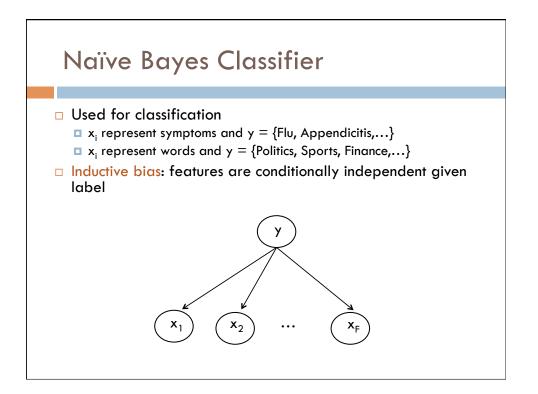




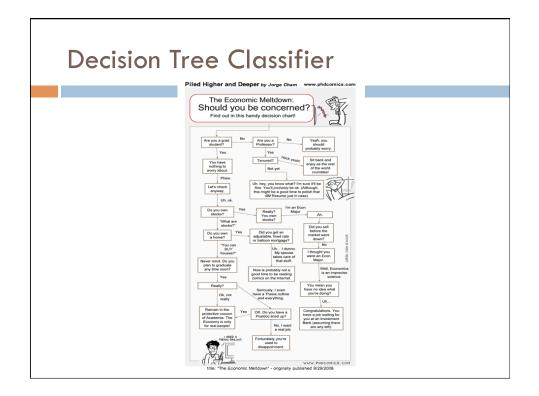




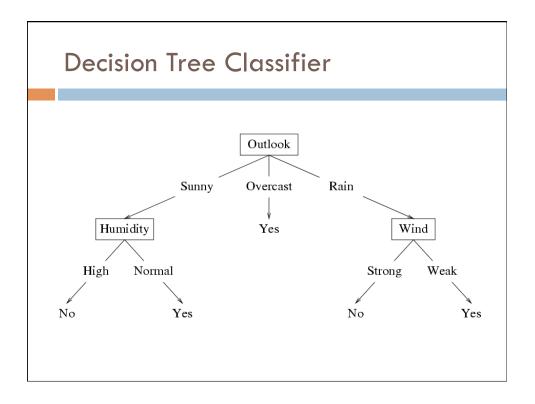


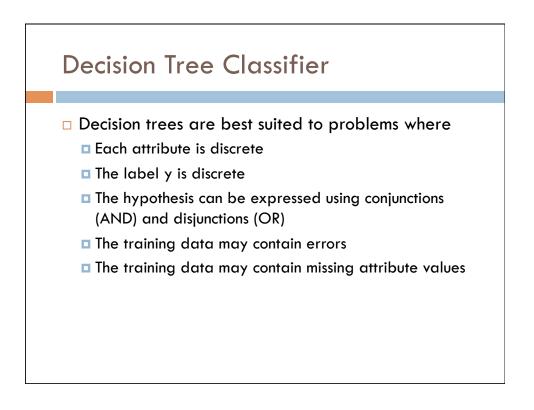


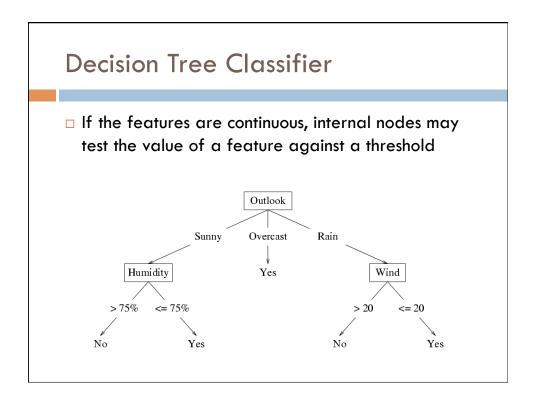
• We're interested in computing the quantity: $p(Y = y | x_1, x_2, \dots, x_n)$ $\propto p(Y = y, x_1, x_2, \dots, x_n)$ $= p(x_1 \dots, x_n | Y = y) p(Y = y)$ $= p(Y = y) \prod_{i=1}^F p(x_i | Y = y)$ • How can we compute p(Y=y) and p(x_i | Y=y) from data set D?

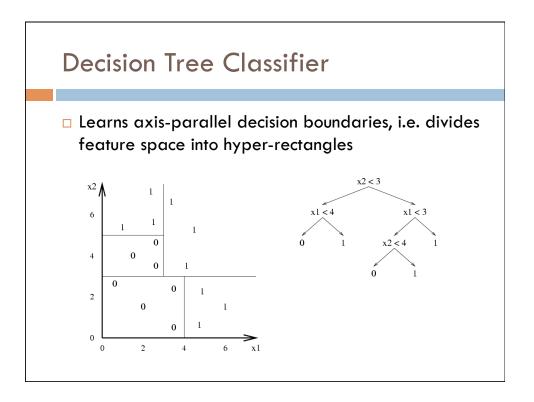


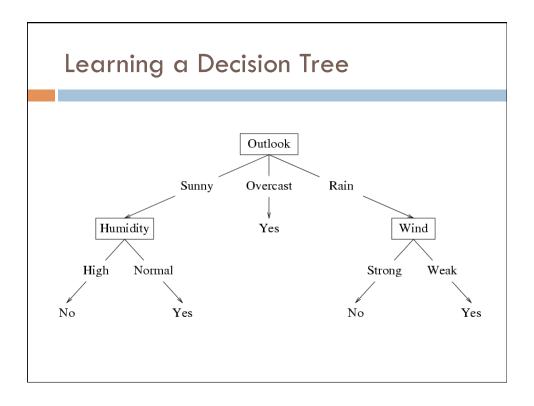
Deci	sio	n Tree	e Cl	assifie	er		
$ \begin{array}{c} \mathbf{x}_1 \longrightarrow \\ \mathbf{x}_2 \longrightarrow \\ \mathbf{x}_3 \longrightarrow \end{array} $	D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12	Outlook Sunny Sunny Overcast Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Overcast Rain	Hot Hot Hot Cool Cool Cool Mild Cool Mild Mild Mild	High High High	Weak Strong Weak Weak Strong Strong Weak Weak	Yes Yes Yes	

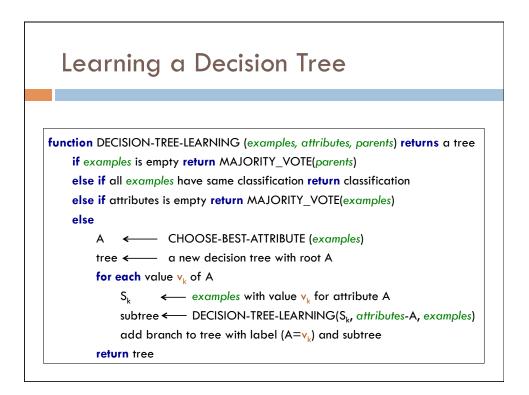


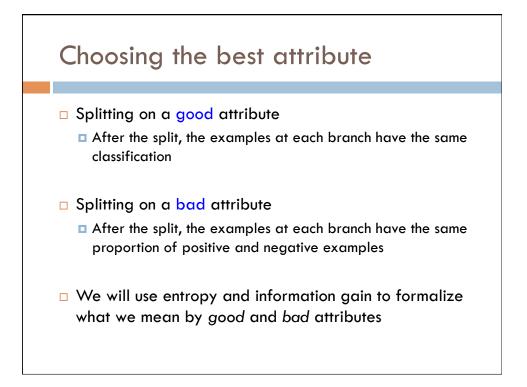


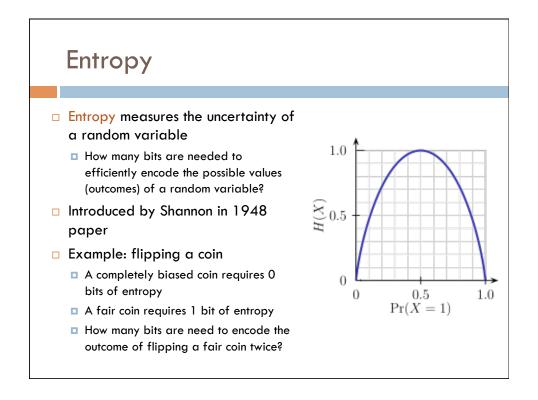












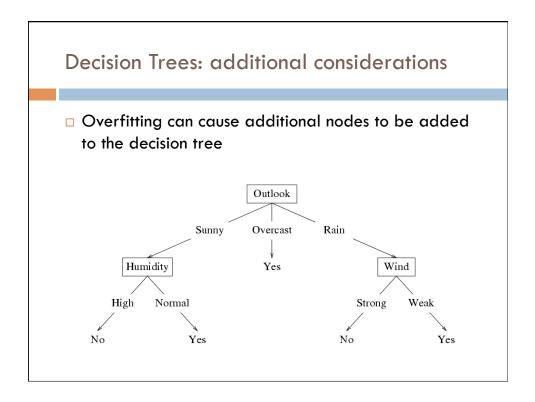
Entropy and Information Gain

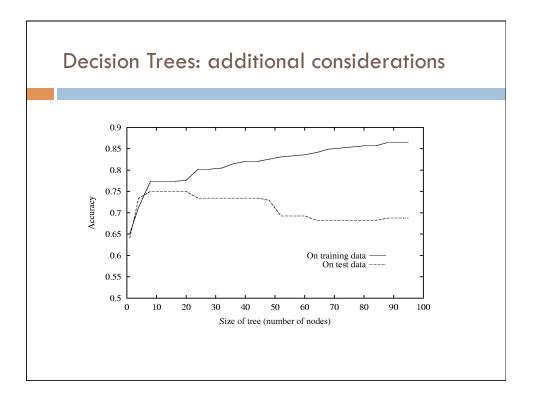
- $\hfill\square$ Let A be a random variable with values ${\bf v}_k$
- $\hfill\square$ Each value v_k occurs with probability $p(v_k)$
- □ Then the entropy of A is defined as

$$H(A) = \sum_{k} p(v_k) \log_2\left(\frac{1}{p(v_k)}\right)$$
$$= -\sum_{k} p(v_k) \log_2 p(v_k)$$

□ (Apply this notion of entropy to choosing the best attribute)

Entrop	У	and	Info	orma	tion	Gain	
Gain(S, A)	$\equiv l$	Entropy(S) –	$\underset{v \in Values}{\overset{\Sigma}{}}$	$\frac{ S_v }{ S }$	$Entropy(S_t$	 v)
[]	Dav	Outlook	Temp.	Humidity	Wind	PlayTennis	
	Dĺ	Sunny	Hot	High	Weak	No	
	D2	Sunny	Hot	High	Strong	No	
	D3	Overcast		High		Yes	
	D4	Rain	Mild	High	Weak	Yes	
	D5	Rain	Cool	Normal	Weak	Yes	
	D6	Rain	Cool	Normal	Strong	No	
	D7	Overcast	Cool	Normal	Strong	Yes	
	D8	Sunny	Mild	High	Weak	No	
	D9	Sunny	Cool	Normal	Weak	Yes	
1	D10	Rain	Mild	Normal	Weak	Yes	
1	D11	Sunny	Mild	Normal	Strong	Yes	
]	D12	Overcast	Mild	High	Strong	Yes	
1	D13	Overcast	Hot	Normal	Weak	Yes	
1	D14	Rain	Mild	High	Strong	No	





Decision Trees: additional considerations

Overfitting

- Can post-process the learned decision tree and prune using significance testing at final nodes
- Cross-validation using validity set
- □ Continuous or integer-valued attributes
 - Use ranges
- Continuous label y
 - Combination of splitting and linear regression