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INFERENCE IN BAYESIAN 
NETWORKS 

Today 

¨  Reading 
¤ AIMA 14.4 – 14.5 

¨  Goals 
¤ Reading independencies 
¤ Exact inference 
¤ Approximate inference 
¤ Case Study: Latent Dirichlet Allocation 
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Three Types of Connections 

Cavity 

Toothache Catch 
GrassWet 

Sprinkler Rain 
Earthquake 

Alarm 

MaryCalls 

Connection patterns and independence 

¨  Linear connection: The two end variables are dependent on 
each other. The middle variable renders them independent. 

¨  Converging connection: The two end variables are 
independent of each other. The middle variable renders them 
dependent. 

¨  Divergent connection: The two end variables are dependent 
on each other. The middle variable renders them independent. 

 
Cavity 

Toothache Catch 
GrassWet 

Sprinkler Rain 
Earthquake 

Alarm 

MaryCalls 
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D-Separation 

¨  Algorithm to determine independencies in BN 
¨  Query: Are two variables Xi and Xj independent? 
¨  Check all paths between Xi and Xj 

¤  If all paths are blocked, then independent 
¤  If any path is not blocked then not independent 

List the independencies in the following 
Bayesian Network 

X1 X2 

X3 

X4 X5 
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Inference in Bayesian Networks 

¨  Probabilistic inference refers to the task of computing some desired 
probability given other known probabilities (evidence) 

¨  Exact Inference 
¤  Enumeration 
¤  Variable elimination 
 

¨  Approximate Inference 
¤  Direct sampling 
¤  Rejection sampling 
¤  Likelihood weighting 
¤  MCMC 

Recall: Burglary network 
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Figure 14.2 FILES: figures/burglary2.eps (Tue Nov 3 16:22:29 2009). A typical Bayesian net-
work, showing both the topology and the conditional probability tables (CPTs). In the CPTs, the letters
B, E, A, J , and M stand for Burglary , Earthquake , Alarm , JohnCalls, and MaryCalls , respec-
tively.
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Inference by Enumeration 

¨  Compute p(b|j,m) and p(-b|j,m) and then normalize 

¨  May compute the same expression more than once 

Step One: select the entries 
in the table consistent with 
the evidence (this becomes 
our world) 
 

Step Two: sum over the H 
variables to get the joint 
distribution of the query 
and evidence variables 

Step Three: Normalize 

p(X = x, Y = y|Z = z) = p(X = x|Z = z) · p(Y = y|Z = z)
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Conditional and joint differ only by 
the normalizing constant 

Independencies read from BN 

Algebraic simplifications 
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Inference by Variable Elimination 

¨  Carry out sums from right to left storing intermediate results to 
avoid recomputation 

¨  Results are stored in factors (matrices) 
¨  Two operations: pointwise multiplication and summation 
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Inference by Variable Elimination 

¨  Every variable that is not an ancestor of a query 
variable or evidence variable is irrelevant 

 

¨  Ordering of variables for summing out affects the 
time and space of VE 
¤ For polytrees (at most one path between any two 

nodes), VE is linear in the size of the network 
¤  In general, time and space are exponential 

B E 

A 

J M 

Approximate Inference 

¨  Analogous to uninformed/informed search 
algorithms that use an incremental formulation 
¤ Direct sampling 
¤ Rejection sampling 
¤ Likelihood weighting 
 

¨  Analogous to local search algorithms that use a 
complete-state formulation and make local 
modifications 
¤ Gibbs sampling (special case of MCMC methods) 
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Incremental formulation 

¨  Basic Idea: 
¤  Draw S samples from a distribution of interest P 

¤  Compute the approximate probability 

¤  (Show this converges to the true probability P) 

 [T, T, F, T] 
 [F, F, F, F] 
 [F, T, F, T] 
 [F, F, T, T] 
 [T, F, F, F] 
 [T, T, F, T] 
 [F, T, F, T] 
 [T, F, F, F] 
 [F, T, T, F] 
 [T, T, F, F] 

 
   

S samples generated using stochastic simulation 

p(X1 = T) ≈ 5/10 

p(X2 = F | X3 = F) ≈ 3/10 

Approximations become exact as S approaches infinity 

Cloudy 

Sprinkler Rain 

Wet 
Grass 

C P(s|C) 

T .10 

F .50 

C P(r|C) 
T .80 
F .20 

S R P(w|S,R) 
T T .99 
T F .90 
F T .90 
F F .01 

P(c) 

.50 

Direct Sampling: no evidence 
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Cloudy 

Sprinkler Rain 

Wet 
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T .80 
F .20 

S R P(w|S,R) 
T T .99 
T F .90 
F T .90 
F F .01 

P(c) 

.50 

Sample: [T, F, T, T] 

Direct Sampling: no evidence 



2/25/14	  

11	  

Rejection Sampling: evidence 

¨  Perform direct sampling 
¨  “Reject”, i.e. remove, any samples that are 

inconsistent with the evidence 
Cloudy 

Sprinkler Rain 

Wet 
Grass 

 
       [C, S, R, W] 

 [T, T, F, T] 
 [F, F, F, F] 
 [F, T, F, T] 
 [F, F, T, T] 
 [T, F, F, F] 
 [T, T, F, T] 
 [F, T, F, T] 
 [T, F, F, F] 
 [F, T, T, F] 
 [T, T, F, F] 

 
   

[T, T, F, T] 
[F, F, F, F] 
[F, T, F, T] 
[F, F, T, T] 
[T, F, F, F] 
[T, T, F, T] 
[F, T, F, T] 
[T, F, F, F] 
[F, T, T, F] 
[T, T, F, F] 
 

p(R | S = true) 
p(R = true  | S = true) ≈ 1/6 
p(R = false | S = true) ≈ 5/6 

Likelihood weighting 

¨  Fixes the values for the evidence so there are no 
wasted samples 

¨  Sample only the non-evidence variables 
¨  Not every sample is created equal 

¤ Need to weight each sample by how likely the evidence is 
given the sampled values 

¤ Compute the product of the conditional distribution of the 
evidence given the sampled values of its parents 

weight = p(e1| Parents(e1)) * p(e2| Parents(e2)) …  
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Cloudy 

Sprinkler Rain 

Wet 
Grass 

C P(s|C) 

T .10 

F .50 

C P(r|C) 
T .80 
F .20 

S R P(w|S,R) 
T T .99 
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F T .90 
F F .01 
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.50 

Likelihood weighting 

weight = 1 

Cloudy 

Rain 

Wet 
Grass 

C P(s|C) 

T .10 

F .50 

C P(r|C) 
T .80 
F .20 

S R P(w|S,R) 
T T .99 
T F .90 
F T .90 
F F .01 

P(c) 

.50 

Likelihood weighting 

Sprinkler 

weight = p(s|c) = .10 
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T .10 

F .50 
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F .20 

S R P(w|S,R) 
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F T .90 
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P(c) 

.50 

Sample: [T, T, T, T] 

Likelihood weighting 

weight = .10 
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Cloudy 

Sprinkler Rain 

Wet 
Grass 

Likelihood weighting 

¨  Estimate probability of query using a weighted 
average 

Sample  
[C,S,R,W] 

Weight 

[T, T, F, T] p(s|c) = .10 

[F, T, F, T] p(s|-c) = .50 

[T, T, F, T] p(s|c) = .10 

[F, T, T, F] p(s|-c) = .50 

[T, T, T, T] p(s|c) = .10 

[F, T, F, T] p(s|-c) = .50 

Gibbs Sampling 

¨  Analogous to a local search algorithm where we 
make local modifications to our current state 
¤  Initial state = random assignment of non-evidence variables 

¤  States = complete assignment of values to variables 

¤  Transition = sample a new value for each variable in turn 

Draw state space for WetGrass example on board 
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Gibbs Sampling 

¨  Analogous to a local search algorithm where we 
make local modifications to our current state 
¤  Initial state = random assignment of non-evidence variables 

¤  States = complete assignment of values to variables 

¤  Transition = sample a new value for each variable in turn 

¨  Each step to a new state is recorded as a sample 

¨  In the limit, the probability of being in a state is 
proportional to that state’s posterior probability 

Gibbs Sampling 

¨  Gibbs sampling is an instance of a more general class 
of algorithms known as Markov Chain Monte Carlo 
(MCMC) algorithms 
¤ Note the use of the phrase “Markov chain” which we saw an 

example of earlier 

¨  Other methods you might hear mentioned 

¤ Metropolis-Hastings (a generalization of Gibbs sampling) 

¤ Variational method 

¤  Belief propagation 


