INDEPENDENCE AND BAYESIAN NETWORKS

Today

\square Reading

- AIMA Ch. 13, Ch. 14.1-14.4
\square Goals
\square Build up to notions of independence
\square Bayesian networks

Summary of distributions so far

$$
p(x)=\sum_{y} p(x, y)
$$

Marginal

$p(x \mid y)=\frac{p(x, y)}{p(y)}$

Probabilistic Inference

Probabilistic inference refers to the task of computing some desired probability given other known probabilities (evidence)

Inference by Enumeration

\square Have a set of random variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$

- Partition the set of random variables into:

We're interested in computing:

- Evidence variables: $E_{1}=e_{1}, E_{2}=e_{2}, \ldots E_{k}=e_{k}$
- Query variables: Q
- Hidden (misc.) variables: $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{r}}$

Step One: select the entries in the table consistent with the evidence (this becomes our world)

Step Two: sum over the H variables to get the joint distribution of the query and evidence variables
$Z=\sum_{q} p\left(Q=q, e_{1}, \ldots, e_{k}\right)$
$p\left(Q, e_{1}, \ldots, e_{k}\right)=\sum_{\left(h_{1}, \ldots, h_{r}\right)} p\left(Q, e_{1}, \ldots, e_{k}, h_{1}, \ldots, h_{r}\right)$

Example of using Bayes' Rule

Provides a "causal" way of assessing probabilities

$$
\begin{aligned}
& p(\text { disease } \mid \text { symptom })=\frac{p(\text { symptom } \mid \text { disease }) \cdot p(\text { disease })}{p(\text { symptom })} \\
& \left.\begin{array}{l}
\mathrm{t}=\text { temperature } \\
\mathrm{f}=\text { flu }
\end{array}\right] \text { Compute } \mathrm{p}(+\mathrm{f} \mid+\mathrm{t})
\end{aligned}
$$

Moving away from numerical quantities

"The traditional definition of independence uses equality of numerical quantities, as in

$$
p(x, y)=p(x) p(y)
$$

suggesting that one must test whether the joint distribution of X and Y is equal to the product of their marginals in order to determine whether X and Y are independent. By contrast people can easily and confidently detect dependencies, even though they may not be able to provide precise numerical estimates of probabilities. A person who is reluctant to estimate the probability of being burglarized the next day or of having a nuclear war within five years can nevertheless state with ease whether the two events are dependent, namely, whether knowing the truth of one proposition will alter the belief of the other."

