

- Is there a classifier that is optimal for all classification problems?
- □ Factors to take into account:
 - How much training data is available?
 - How simple/complex is the problem? (linear vs. nonlinear decision boundary)
 - How noisy/skewed is the training data?
 - How stable is the problem over time?
 - Is it a singly-labeled or multi-labeled problem? Are the labels correlated?

Boosting

- Boosting is one of the most common forms of constructing an ensemble of classifiers
 - Learn a series of weak classifiers, i.e. classifiers whose performance is slightly better than random chance
 - Weight each weak classifier to create a final strong classifier
 - Often the weight for each classifier is proportional to its accuracy
- A well-known boosting algorithm is AdaBoost short for "Adaptive Boosting" (Freund and Schapire 1995)

Mυ	lti-class	Classifi	cation	
One-vs-All	x1 c1	x1 1	x1 -1	x1 -1
	x2 c3	x2 -1	x2 -1	x2 1
	x3 c1	x3 1	x3 -1	x3 -1
	x4 c2	x4 -1	x4 1	x4 -1
	original training data	c1 vs. all	c2 vs. all	c3 vs. all
One-vs-One	x1 c1	x1 1	x1 1	
	x2 c3		x2 -1	x2 -1
	x3 c1	x3 1	x3 1	
	x4 c2	x4 -1		x4 1
	original training data	c1 vs. c2	c1 vs. c3	c2 vs. c3

Multi-label Classification

- Each example can be labeled with multiple labels
 - Don't confuse this with multi-class classification!
 - Common for document classification or object recognition
- One-vs-all
- □ One classifier for every possible combination of labels
 - Combinatorial explosion
 - Limited training data

