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ENSEMBLE METHODS 

Today 

¨  Reading 
¤ AIMA 18.10-18.11 

¨  Goals 
¤ Ensembles of classifiers 
¤  (Supervised learning: putting it all together) 
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Which classifier should I use? 

¨  Is there a classifier that is optimal for all 
classification problems? 

¨  Factors to take into account: 
¤ How much training data is available? 
¤ How simple/complex is the problem? (linear vs. 

nonlinear decision boundary) 
¤ How noisy/skewed is the training data? 
¤ How stable is the problem over time? 
¤  Is it a singly-labeled or multi-labeled problem? Are the 

labels correlated? 

How Much Data? 

¨  Learning theory (PAC learning) 
¤  Gives theoretical bounds on how much training data you need for a 

given accuracy (AIMA 18.5) 
 

¨  Very Little 
¤  There are empirical results that naïve Bayes should do well in such 

circumstances (Ng and Jordan 2002 NIPS) 
¤  The interesting theoretical answer is to explore semi-supervised training 

methods: Bootstrapping, EM over unlabeled documents, … 
¤  The practical answer is to get more labeled data as soon as you can 
 

¨  A reasonable amount of data 
¤  Start with SVMs 
 

¨  A lot of data? 
¤  expensive methods like SVMs (train time) or kNN (test time) are quite 

impractical 
¤  Naïve Bayes! - with lots of data, simple methods work well 
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Ensembles of Classifiers 

¨  Ensemble - A group of items viewed as a whole 
rather than individually 

¨  An ensemble of classifiers – A group of classifiers 
whose predictions are combined to produce one 
final prediction 

¨  Benefits 
¤ Harder to make a wrong prediction 
¤ More expressive hypothesis 

Ensemble of decision trees 

¨  Combine the prediction of each decision tree using 
majority vote 

¨  Variation of this called a Random Forest 
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Figure 18.6 FILES: figures/induced-restaurant-tree.eps (Tue Nov 3 16:23:04 2009). The deci-
sion tree induced from the 12-example training set.
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Figure 18.2 FILES: figures/restaurant-tree.eps (Tue Nov 3 16:23:29 2009). A decision tree for
deciding whether to wait for a table.
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Ensemble of linear classifiers 

¨  More expressive than any one linear classifier by itself 

224 Chapter 18. Learning from Examples
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Figure 18.32 FILES: figures/ensemble-expressiveness.eps (Tue Nov 3 16:22:41 2009). Illustra-
tion of the increased expressive power obtained by ensemble learning. We take three linear threshold
hypotheses, each of which classifies positively on the unshaded side, and classify as positive any exam-
ple classified positively by all three. The resulting triangular region is a hypothesis not expressible in
the original hypothesis space.

¨  Multi-expert combination methods 
¤  Global - All classifiers generate a prediction and all predictions 

are used in some way 
n  e.g. weighting, voting, averaging 

¤  Local – A gating model chooses one (or very few) of the 
classifiers responsible for generating the prediction for a specific 
input 
n  e.g. mixture of experts 

¨  Multi-stage combination 
¤  Classifiers are trained with, or tested on, only the instances where 

the previous classifiers are not accurate enough  
n  e.g. cascading 

Ensemble Schemes 
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Boosting 

¨  Boosting is one of the most common forms of 
constructing an ensemble of classifiers 
¤  Learn a series of weak classifiers, i.e. classifiers whose 

performance is slightly better than random chance 
¤ Weight each weak classifier to create a final strong 

classifier 
¤ Often the weight for each classifier is proportional to its 

accuracy 

¨  A well-known boosting algorithm is AdaBoost short for 
“Adaptive Boosting” (Freund and Schapire 1995) 

AdaBoost 
Section 18.10. Ensemble Learning 751

function ADABOOST(examples ,L,K ) returns a weighted-majority hypothesis
inputs: examples , set of N labeled examples (x1, y1), . . . , (xN , yN )

L, a learning algorithm
K , the number of hypotheses in the ensemble

local variables: w, a vector of N example weights, initially 1/N
h, a vector of K hypotheses
z, a vector of K hypothesis weights

for k = 1 to K do
h[k ]←L(examples , w)
error ← 0
for j = 1 to N do

if h[k ](xj) "= yj then error ← error + w[j]

for j = 1 to N do
if h[k ](xj) = yj then w[j]←w[j] · error/(1 − error )

w← NORMALIZE(w)
z[k ]← log (1 − error)/error

return WEIGHTED-MAJORITY(h, z)

Figure 18.34 The ADABOOST variant of the boosting method for ensemble learning. The
algorithm generates hypotheses by successively reweighting the training examples. The func-
tion WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the
highest vote from the hypotheses in h, with votes weighted by z.
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Figure 18.35 (a) Graph showing the performance of boosted decision stumps with K =5

versus unboosted decision stumps on the restaurant data. (b) The proportion correct on the
training set and the test set as a function of K , the number of hypotheses in the ensemble.
Notice that the test set accuracy improves slightly even after the training accuracy reaches 1,
i.e., after the ensemble fits the data exactly.
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AdaBoost 

¨  Generates a sequence of weak classifiers each focusing on the 
errors of the previous classifier 

¨  AdaBoost returns a strong classifier, i.e. a classifier that can 
perfectly classify the training data for large enough K 

¨  To classify a new example x: 
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Bagging 

¨  Short for “Bootstrap aggregating” 
¨  Given training set D 

¤ Generate M new training sets Di where |Di| < |D| by 
sampling from D with replacement 

¤ This is a statistical technique known as bootstrapping 
¤ Train a classifier on each of the M new training sets 
¤ Combine output of M classifiers using averaging or 

voting 

¨  Random Forests (Breimen, 2001) 
¤ Bagged decision trees 
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Cascading classifiers 

¨  Order classifiers by 
complexity, e.g. 
representational complexity 

 

¨  Use ith classifier di only if 
previous classifiers are not 
confident 

 

¨  Good with high precision/
low recall classifiers 

Ensemble methods 

¨  Boosting 
¤ Weighted training sets 
¤  Ex: Adaboost 

¨  Bagging 
¤  Resampled training sets 
¤  Ex: Random forests 

¨  Cascading 
¤  Ordered collection of classifiers 
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Putting it all together 

¨  Supervised learning: putting it all together 
¤ Step 1: Formulating the problem 
¤ Step 2: Exploring the data 
¤ Step 3: Feature Selection 
¤ Step 4: Training 
¤ Step 5: Testing 

The first 4 steps are not 
necessarily done in a 

strict linear progression 

Overview 
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xN1  xN2 xN3 … xNF 
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class 
value 

Step 1: Formulate the problem 

¨  What quantity are you predicting? 
¤  Regression 

n  Range? Changing over time? 
¤  Classification 

n  Binary classification? Multi-class classification? 
n  Singly-labeled? Multi-labeled? 
n  For multi-labeled classification tasks, how correlated are the labels? 

¨  What data do you have? 
¤  Where to get labeled data? (Amazon mechanical turk) 
¤  How much labeled data? 
¤  What is the quality of the labeled data? 
¤  Are the labels learnable given the data? 
¤  Is the distribution of labels in the data skewed/imbalanced? 



4/10/14	
  

10	
  

Multi-class Classification 

¨  Generalization of binary classification to 
more than 2 classes 

 

¨  One-versus-all 
¤  Train C independent binary classifiers: one for each 

label 
¤  For classifier c 

n  Examples with label c are positive examples 
n  All other examples are negative examples 

 

¤  At prediction time, choose label whose corresponding 
classifier has highest “confidence” 

¨  One-versus-one 
¤  Train C(C-1)/2 binary classifiers 
¤  At prediction time, each classifier votes for a label 

NN, NNP, VBZ, DT, RB,…  

Multi-class Classification 
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Multi-label Classification 

¨  Each example can be labeled with 
multiple labels 
¤ Don’t confuse this with multi-class 

classification! 
¤ Common for document classification or 

object recognition 

¨  One-vs-all 
¨  One classifier for every possible combination of labels 

¤  Combinatorial explosion 
¤  Limited training data 

Step 2: Exploratory Data Analysis 

¨  Look at the data. It’s surprising how often we forget 
to actually do this! 

¨  Exploratory Data Analysis (EDA) is a statistical 
mindset 
¤ Box plots, histograms, scatter plots, mean, mode, 

deviations 
¤ Can guide the modeling process by 

n give you insight into the data 
n help (in)validate your assumptions 
n detect outliers 
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Step 3: Feature Selection 

¨  What features should I use? 
¤  Dimensionality reduction if exist time/space constraints 
¤  Reduce noise in the data (irrelevant or redundant features) 

¨  Dimensionality reduction 
¤  Principal component analysis (PCA) 
¤  Singular value decomposition (SVD) 
¤  Canonical correlation analysis (CCA) 

¨  Regularization 
¤  Use every feature but penalize classifiers that are overly complex 
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encourages sparse 
weight vectors 


