2/13/14

CONSTRAINT
SATISFACTION

Today
N

0 Reading
o AIMA Chapter 6

1 Goals
o1 Constraint satisfaction problems (CSPs)
o Types of CSPs
o Inference

o Search + Inference

8-queens problem

How would you go about deciding where to put a
third queen on the board in column 32

8-queens problem

How would you go about deciding where to put a
third queen on the board in column 32

2/13/14

8-queens problem

This problem includes a set of constraints
As a result, we need more than just a successor
function and goal test

We need a way to propagate the constraints imposed
by one queen to the others and a way to detect early
failure

Explicitly represent constraints

Algorithm to manipulate constraints

Constraint satisfaction problems

Set of variables {X;, X,, ..., X }
Each variable X. has a domain D; of possible values

Set of constraints {C,, Cy, ..., C.}
Each constraint C_involves a subset of variables and
specifies the allowable combinations of values to these
variables
A state is an assignment of values to some or all of
the variables
If the assignment doesn’t violate any constraints we say it
is consistent or legal
The goal test is checking for a consistent and
complete assignment

2/13/14

2/13/14

Example: 8-queens problems

O Variable?
0 Domaing

0 Constraints?

Example: 8-queens problems

o Variables: one for each queen {X;, ..., Xg}
71 Domain: indicates row D ={1,2,...,8}

0 Constraints:

Xi=k=X;#k Yi#j
Xi = ki, Xj = kj = |i — j| # |ki — k;]

Example: Map coloring

0 Variables: {WA, NT, SA, Q, NSW, V, T}
-1 Domains: {red, blue, green}

o Constraints: adjacent regions have different colors
Implicit: WA # NT, WA # SA, SA # NT, NT £ Q,...
Explicit: (WANT) € {(red,green), (red,blue),...}

I

Example: Task scheduling

0 Variables: {AxleF, AxleB, WheelRF, WheellF....,Inspect}
0 Domains: Time task starts D = [0, 1, 2,...,00)
o Constraints:

Axle must be done before the wheel

m AxleF + 10 < WheellF

m AxleF + 10 < WheelRF

The front axle and the back axle cannot be done at the
same time

u (AxleF + 10 < AxleB) OR (AxleB + 10 < AxleF)

Everything must be done within 30 minutes

m Change domains to have upper bound 30 min.

2/13/14

More examples

More toy examples 2[s[7

sudoku, cryptarithmetic

|

Real-world applications g o

Interpreting lines in 3D

Assignment problems, e.g. who teaches what class?
Timetable problems, e.g. which class offered when? where?
Transportation scheduling

Factory scheduling

Circuit layout

Types of CSPs - variables

Discrete variables
Finite domains
size d means O(d") possible assignments to explore
Infinite domains
Linear constraints (e.g. T, + d, < T,) are solvable
Non-linear constraints undecidable

Continuous variables

linear programming problems with linear equality or

inequality constraints solvable in polynomial time

2/13/14

Types of CSPs - constraints

0 Unary constraints involve a single variable

e.g. SA Z green

|

Binary constraints involve pairs of variables
SA # NSW

A binary CSP can be illustrated using a constraint graph

O

Higher-order constraints
e.g. A, B, and C cannot be in the same grouping

e.g. AlIDiff (all variables must be assigned different values)
0 Preference constraints
costs on individual variable assignments

constraint optimization problem

Constraint Graph

O

Useful for binary constraint CSPs where each constraint relates
(at most) two variables

1 Nodes correspond to variables

O

Edges (arcs) link two variables that participate in a constraint

O

Use graph to speed up search

Queensland ' I

Victoria

Tasmania @

Northern
Territory

Western
Australia
South
Australia

2/13/14

Solving CSPs: Constraint Propagation

11 Use the constraints to reduce the number of legal values
for a variable

01 Possible to find a solution without searching

Node consistency

m A node is node-consistent if all values in its domain satisfy the
unary constraints

Arc consistency

u A node X; is arc-consistent w.r.t. node X; if for every valuve in D,
there exists a value in D; that satisfies the binary constraint

m Algorithm AC-3

Other types of consistency (path consistency, k-consistency,
global constraints)

AC-3 algorithm for Arc consistency

function AC-3(csp) returns false if inconsistency found, true otherwise
queve <— all arcs in csp
while queue not empty
(XiX;) «— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X,, X;)
if size Di == O return false
for each arc (X, ,X))
add (X,, X;) to queve
return true

function REMOVE-INCONSISTENT-VALUES(X;, X))
revised «<— false
for each x in D,
if Ayin D; s.t. (x,y) satisfies constraints
delete x from D,
revised €«— true

return revised

2/13/14

AC-3 algorithm for Arc consistency

function AC-3(csp) returns false if inconsistency found, true otherwise .
¢ constraints (arcs)

d domain size

queve <«— all arcs in csp

J

while queue not empty
(X;,X;) <— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;)
if size Di == O return false B O(Cd)
for each arc (X, X))
add (X,, X;) to queve

Total
J O(cd?)

return true

function REMOVE-INCONSISTENT-VALUES(X;, X)) -
revised «— false
for each x in D,
if 59 y in D; s.t. (x,y) satisfies constraints — O(dz)
delete x from D,
revised €«— true

return revised -

Search
‘/{}N‘
WA=red WA=green WA=Dblue
WA=red WA=red
NT=green NT=blue
WA=red WA=red
NT=green NT=green
Q=red Q=blue Jomem
I T
} v

2/13/14

2/13/14

Backtracking Search

function CSP-BACKTRACKING(assignment) returns a solution or failure
if assignment complete return assignment
X <— select unassigned variable
D <«— select an ordering for the domain of X
for each value in D
if value is consistent with assignment
add (X = value) to assignment
(ADD INFERENCE HERE)
result <— CSP-BACKTRACKING(assignment)
if result # failure return result
remove (X = value) from assignment

return failure

Backtracking Search

0 Backtracking = DFS + variable ordering + constraints
checking

O ldea 1: One variable at a time

Variable assignments are commutative so fix ordering

i.e. (WA = red, NT = green) is the same as (NT = green, WA = red)

0 ldea 2: Check constraints as we go
Consider only values which do not conflict with previous assignments
May take some computation to check
“incremental goal test”

(Additional inference is optional, e.g. forward checking or arc-consistency)

10

Improving Backtracking search

Idea 1: Intelligent ordering
Which variable X should be assigned a value next?
In which order should its domain D be sorted?
Idea 2: Incorporating inference
Forward checking
AC-3
Idea 3: Exploiting structure

Can we exploit the problem structure?

ldea 1: Intelligent Ordering

Which variable should we choose?

Northern
Territory

Queensland
Western
Australia
South
Australia

Victoria

Tasmania

2/13/14

11

Idea 1: Intelligent Ordering

0 Variable ordering
Minimum-remaining values heuristic - Choose the
variable with the fewest “legal” moves remaining
Degree heuristic - Choose variable involved in the
largest number of constraints with remaining unassigned
variables

0 Value ordering

Least-constraining value heuristic - Choose the value
that rules out the fewest choices for the neighboring
variables

ldea 2: Incorporating Inference

0 Forward checking

After an assignment X = x, ensure all arcs of the form (Y,X)
are arc consistent

0 Run AC-3 algorithm

Ensure all arcs are arc consistent

0O Run path-consistency or k-consistency algorithm

2/13/14

12

Example

o1 Run Backtracking on graph coloring
Use MRV heuristics to choose variable
Use LCV heuristics to choose value

Use forward checking for inference

Limitations of Forward Checking

01 Backtracking + Forward checking

WA, Q, V, NT, NSW, SA, T @ e
@“
G
WA NT Q NSW V SA T °
HEE EEE BEEE EEER BEEE EEE EER @

2/13/14

13

Limitations of Forward Checking

0 Backtracking + Forward checking

WA, Q, V, NT, NSW, SA, T () ()
@‘@‘
ol
WA NT Q NSW Vv SA T °
HEN NN EEE EEE SEE EEE EER o
] HE ENE BN EEE EE EEE
Limitations of Forward Checking
0 Backtracking + Forward checking
WA, Q, V, NT, NSW, SA, T (1))
@@‘
S
WA NT Q NSW Vv SA T °
HEN NN EEE EEE SEE EEE EER o
B AN ENH EEE EEE| EE EER
N H B (N EEEN H N

2/13/14

14

Limitations of Forward Checking

0 Backtracking + Forward checking

WA, Q, V, NT, NSW, SA, T @'e
“"'.%“ill
o
WA NT Q NSW Vv SA T °
HEN NN EEE EEE SEE EEE EER 0
B AN ENH EEE EEE| EE EER
B H B (N N EER H N
| H B B || HEn
Limitations of Forward Checking
0 Backtracking + Forward checking
WA, Q, V, NT, NSW, SA, T @'e
“"'.%“ill
S
WA NT Q NSW Vv SA T °
HEN NN EEE EEE SEE EEE EER 0

N EN EEN gEE [EEE| ENEEE
O (H) B |m n/EEN| (m)iEN
O W m |§ E mmm

Could have detected earlier that things were going wrong!

2/13/14

15

Limitations of Forward Checking

o1 Using AC-3 in stead of forward checking
WA, Q, V, NT, NSW, SA, T

¥

WA

NT

NSW

SA

T

g
®

Limitations of Forward Checking

71 Using AC-3 in stead of forward checking
WA, Q, V, NT, NSW, SA, T

)

WA | NT Q | NSW | V SA T
HEN EEN EEH EEE EEN EEN EED
B HN NEN EEE EEE ©EE EER

g
®

2/13/14

16

Limitations of Forward Checking

o1 Using AC-3 in stead of forward checking

WA, Q, V, NT, NSW, SA, T () 0
c QU
B
WA NT Q NSW V SA T °
ENE NN EEE EEE | EEE EEE EEE
O BN ONE EEE AN BN EEN ©
B I

ldea 3: Exploit Structure

0 Independent subproblems
Find connected components of the constraint graph
e.g. Tasmania and the mainland are independent

If we can split n variables into ¢ subproblems of n/c
variables each: O(d") —— O(d®n/c)

2%
@ ‘ Tasmania is independent of

ods
@
®

the mainland!

2/13/14

17

ldea 3: Exploit Structure

01 Tree structured constraint graphs

Can solve in linear time using AC-3

ze @z

(a) (b)

ldea 3: Exploit Structure

71 Reduction to a tree structured graph

Cycle cutset — a subset of the variables whose removal
creates a tree.

Tree decomposition — Divide graph into subproblems,
solve independently merge the solutions

2/13/14

18

CSP Summary

Constraint Satisfaction Problems (CSPs)
Solving CSPs using inference

Solving CSPs using search

Backtracking algorithm = DSF + fixed ordering +
constraints checking

General (not problem-specific) heuristics
Improving Backtracking

Intelligent ordering

Incorporating inference

Exploiting structure

2/13/14

19

