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CLUSTERING 

Today 

¨  Reading 
¤  Introduction to Information Retrieval (IR) Ch. 16, 17 

¨  Goals 
¤ Finish Agglomerative clustering 
¤ Briefly look at Divisive clustering 
¤ Evaluating cluster quality 
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Lots of Announcements! 

¨  If you haven’t voted for a movie yet, login to Piazza 
to do so 

¨  Review the list of topics for exam 2 

¤  Friday April 25th 

¤ 50 minute in-class 

¨  Review the schedule of events for end of semester 

Types of clustering algorithms 

¨  Flat versus Hierarchical 
¤  Flat algorithms return an unstructured set of clusters 
¤  Hierarchical algorithms return a hierarchy of clusters 
 

¨  Sequential (online) versus Batch 
¤  Sequential algorithms are typically fast 
 

¨  Hard versus soft 
¤  Hard algorithms make a hard assignment of elements to clusters 
¤  Soft algorithms compute a distribution over clusters for each 

element 
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K-means Clustering 

Online edition (c)�2009 Cambridge UP

362 16 Flat clustering
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! Figure 16.6 A K-means example for K = 2 in R2. The position of the two cen-
troids (!µ’s shown as X’s in the top four panels) converges after nine iterations.
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! Figure 16.6 A K-means example for K = 2 in R2. The position of the two cen-
troids (!µ’s shown as X’s in the top four panels) converges after nine iterations.

Flat versus Hierarchical 

¨  K-means 
¤  Returns unstructured set of clusters 
¤  Requires user to determine K 
¤ Non-deterministic 
¤  Linear run time O(IKNM) 

¨  Hierarchical (e.g. Agglomerative clustering) 
¤  Returns a hierarchy of clusters 
¤ No need to (initially) determine K 
¤ Deterministic 
¤ Quadratic run time 
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Hierarchical Clustering 

¨  Agglomerative clustering 
¤ Start with N clusters each with one data point 
¤ Merge similar clusters to form larger clusters until there 

is only a single cluster left 
 

¨  Divisive Clustering 
¤ Start with a single cluster containing all data points 
¤ Divide large clusters into smaller clusters until each cluster 

contains a single data point 
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Agglomerative Clustering 

Online edition (c)�2009 Cambridge UP

17.1 Hierarchical agglomerative clustering 381

SIMPLEHAC(d1, . . . , dN)
1 for n← 1 to N
2 do for i← 1 to N
3 do C[n][i]← SIM(dn, di)
4 I[n]← 1 (keeps track of active clusters)
5 A← [] (assembles clustering as a sequence of merges)
6 for k← 1 to N − 1
7 do 〈i, m〉 ← arg max{〈i,m〉:i %=m∧I[i]=1∧I[m]=1} C[i][m]

8 A.APPEND(〈i, m〉) (store merge)
9 for j← 1 to N

10 do C[i][j]← SIM(i, m, j)
11 C[j][i]← SIM(i, m, j)
12 I[m]← 0 (deactivate cluster)
13 return A

! Figure 17.2 A simple, but inefficient HAC algorithm.

(a) single-link: maximum similarity (b) complete-link: minimum similarity

(c) centroid: average inter-similarity (d) group-average: average of all similarities

! Figure 17.3 The different notions of cluster similarity used by the four HAC al-
gorithms. An inter-similarity is a similarity between two documents from different
clusters.

Cluster similarity: Single-link 

¨  Single link 
¤ Similarity of cj and ci U cm is the similarity of their most 

similar members 
¤ Can result in unwanted “long” clusters due to chaining 

sim((ci∪cm ),cj ) =max(sim(ci,cj ), sim(cm,cj ))
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Cluster similarity: Complete-link 

¨  Complete link 
¤  Similarity of cj and ci U cm is the similarity of their least similar 

members 
¤ Makes “tighter” spherical clusters that are typically 

preferable. 
¤  Sensitive to outliers 

sim((ci∪cm ),cj ) =min(sim(ci,cj ), sim(cm,cj ))

Cluster similarity: Group-average 

¨  Group-average (average-link) 
¤  Uses all vectors in clusters cj and ci U cm to compute similarity 

¤  Average similarity between all pairs of vectors from cj and ci U cm 
(including pairs from same cluster) 

¤  Efficient computing of the group-average can be done if using cosine 
similarity 
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Cluster similarity: Centroid 

¨  Centroid clustering 
¤  Similarity of cluster cj and cluster ci U cm is the similarity of their 

centroids 

 
¤  Equivalent to the average similarity of all pairs of documents from 

different clusters 
¤  Similarity between clusters can increase as we merge clusters (known 

as inversions) 
n  Horizontal merge lines can be lower than the previous merge line 

 

Divisive Clustering 

¨  Top-down clustering 
¨  Divisive clustering algorithm uses a flat clustering 

algorithm as a subroutine 
¤ Start with all data points in one cluster 
¤ Split using a flat clustering algorithm 
¤ Apply recursively until each data point is in its own 

cluster  
¨  Can be more efficient than agglomerative  
¨  Benefits from complete information about the entire 

data set 
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Which clustering is correct? 

¨  Different techniques cluster the same data set 
differently. 

¨  Who is right?  Is there a “right” clustering? 

Which clustering is correct? 
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Which clustering is correct? 

¨  Internal criteria 
¤ A good clustering has high intra-cluster similarity and 

low inter-cluster similarity 
 

¨  External criteria 
¤ Use an external task (e.g. search, document 

classification) to validate the clustering 
¤ Requires labeled data 
 

External Criteria 

¨  Purity 
¤  Set aside labels from labeled data 
¤ Cluster data 
¤  Predicted label for each cluster is label with highest 

frequency 

¤ Compute accuracy: 

Online edition (c)�2009 Cambridge UP

16.3 Evaluation of clustering 357
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! Figure 16.4 Purity as an external evaluation criterion for cluster quality. Majority
class and number of members of the majority class for the three clusters are: x, 5
(cluster 1); o, 4 (cluster 2); and !, 3 (cluster 3). Purity is (1/17)× (5 + 4 + 3) ≈ 0.71.

purity NMI RI F5

lower bound 0.0 0.0 0.0 0.0
maximum 1 1 1 1
value for Figure 16.4 0.71 0.36 0.68 0.46

! Table 16.2 The four external evaluation measures applied to the clustering in
Figure 16.4.

Formally:

purity(Ω, C) =
1

N ∑
k

max
j

|ωk ∩ cj|(16.1)

where Ω = {ω1, ω2, . . . , ωK} is the set of clusters and C = {c1, c2, . . . , cJ} is
the set of classes. We interpret ωk as the set of documents in ωk and cj as the
set of documents in cj in Equation (16.1).

We present an example of how to compute purity in Figure 16.4.2 Bad
clusterings have purity values close to 0, a perfect clustering has a purity of
1. Purity is compared with the other three measures discussed in this chapter
in Table 16.2.

High purity is easy to achieve when the number of clusters is large – in
particular, purity is 1 if each document gets its own cluster. Thus, we cannot
use purity to trade off the quality of the clustering against the number of
clusters.

A measure that allows us to make this tradeoff is normalized mutual infor-NORMALIZED MUTUAL

INFORMATION

2. Recall our note of caution from Figure 14.2 (page 291) when looking at this and other 2D
figures in this and the following chapter: these illustrations can be misleading because 2D pro-
jections of length-normalized vectors distort similarities and distances between points.
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External Criteria 

¨  Normalized Mutual Information 
¤ Mutual Information is an information theoretic quantity 

similar to entropy and information gain 

¤ How much information does the clustering contain about 
the class labels? 
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11

External Criteria 

¨  Normalized Mutual Information 
¤ Define random variables for the clustering and for the 

class label: 



4/18/14	  

11	  

External Criteria 

¨  Normalized Mutual Information 
¤ Given by the equation: 

¤ Why are we normalizing by the entropy? 

¨  Two data points should be in the same cluster if and 
only if they have the same label 

¨  Define contingency table: 

¨  Once we have a contingency table, we can compute 
the Rand Index which is just the accuracy 

22	  

Rand Index 
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Rand Index Example 

¨  There are        = 136 pairs of data points 

same cluster diff. cluster 

same class 20 24 

diff class 20 72 

RI = (20+72)/136 = 0.68  

€ 

P =
TP

TP +FP

€ 

R =
TP

TP + FN

F-measure 

¨  Given the contingency table, we can compute the 
precision, recall, and F-measure 

¨  The parameter βcontrols the weighting between 
precision and recall 
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All four measures range from 0 (really bad 
clustering) to 1 (perfect clustering). 

 

Clustering Evaluation 


