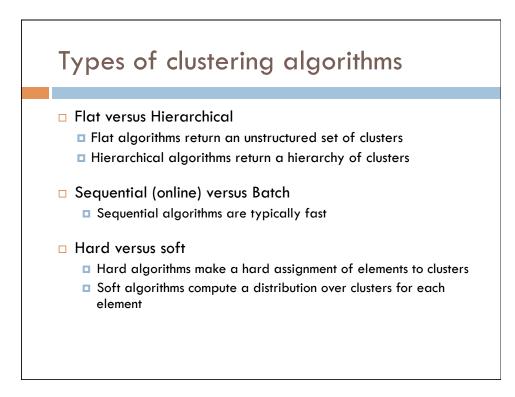
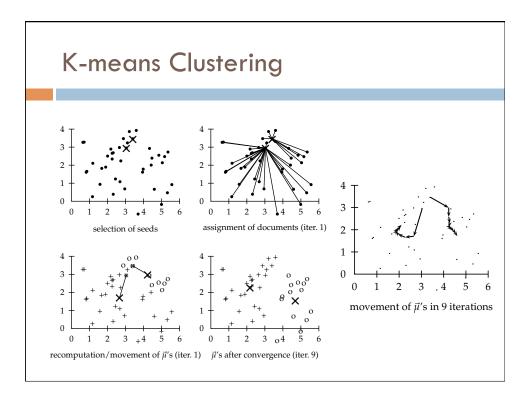
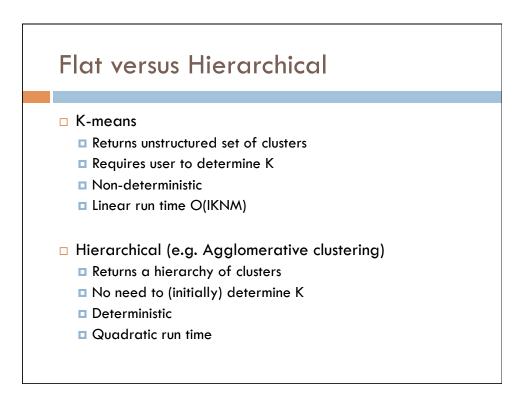


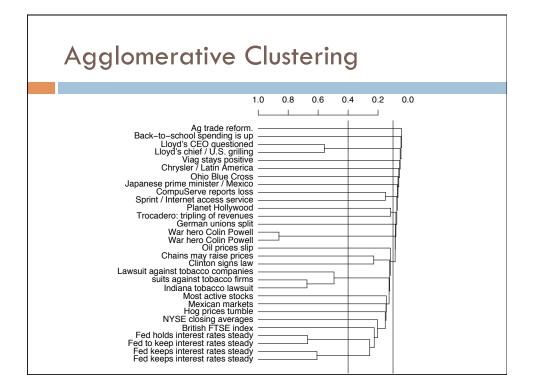
- If you haven't voted for a movie yet, login to Piazza to do so
- □ Review the list of topics for exam 2
 - Friday April 25th
 - 50 minute in-class
- Review the schedule of events for end of semester

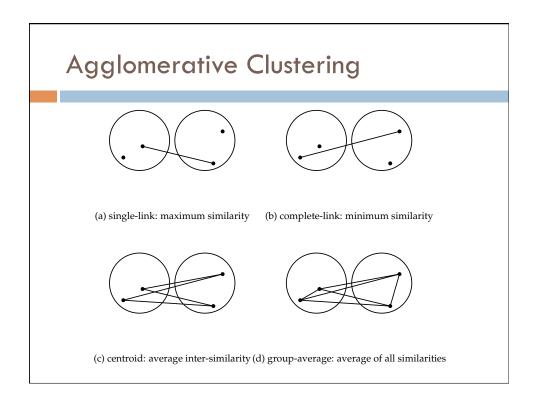


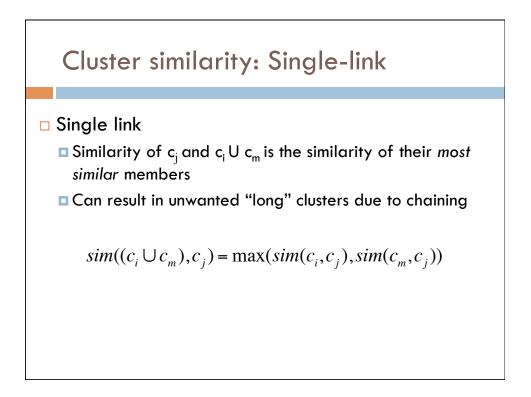




- Agglomerative clustering
 - Start with N clusters each with one data point
 - Merge similar clusters to form larger clusters until there is only a single cluster left
- Divisive Clustering
 - Start with a single cluster containing all data points
 - Divide large clusters into smaller clusters until each cluster contains a single data point





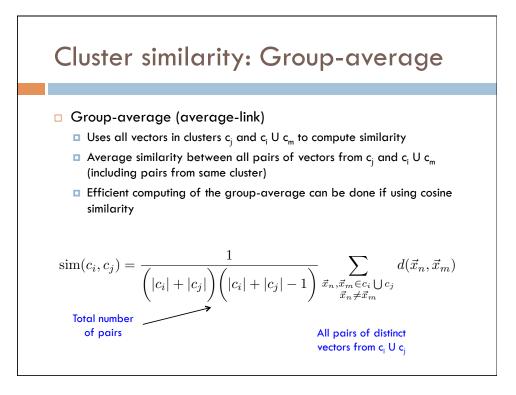


Cluster similarity: Complete-link

□ Complete link

- Similarity of c_i and c_i U c_m is the similarity of their least similar members
- Makes "tighter" spherical clusters that are typically preferable.
- Sensitive to outliers

$$sim((c_i \cup c_m), c_i) = min(sim(c_i, c_i), sim(c_m, c_i))$$



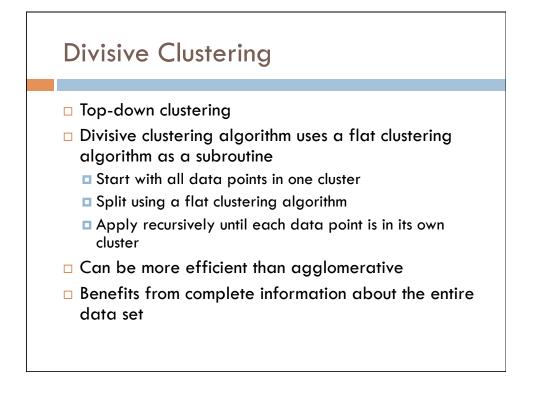
Cluster similarity: Centroid

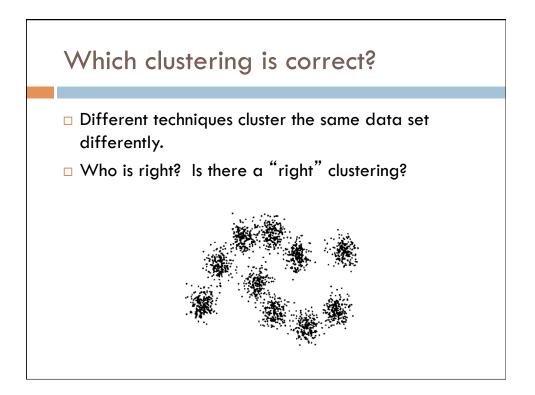
Centroid clustering

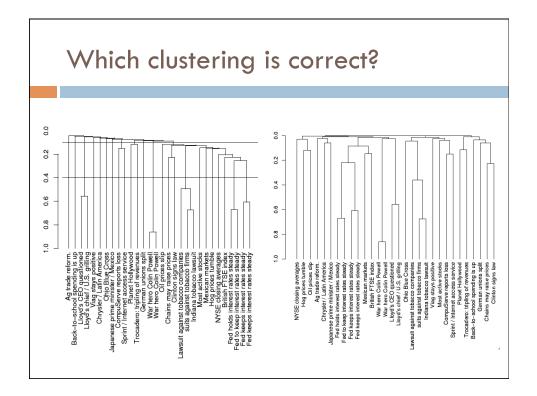
□ Similarity of cluster c_j and cluster $c_i \cup c_m$ is the similarity of their centroids SIM-CENT $(\omega_{i_\ell} \omega_i) = \vec{\mu}(\omega_i) \cdot \vec{\mu}(\omega_i)$

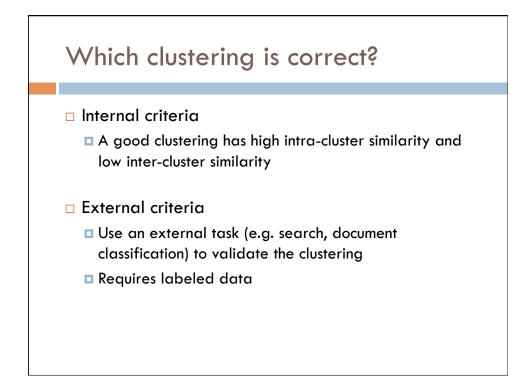
$$\begin{array}{lll} \psi_{i},\omega_{j}) & = & \vec{\mu}(\omega_{i})\cdot\vec{\mu}(\omega_{j}) \\ & = & (\frac{1}{N_{i}}\sum_{d_{m}\in\omega_{i}}\vec{d}_{m})\cdot(\frac{1}{N_{j}}\sum_{d_{n}\in\omega_{j}}\vec{d}_{n}) \\ & = & \frac{1}{N_{i}N_{j}}\sum_{d_{m}\in\omega_{i}}\sum_{d_{n}\in\omega_{j}}\vec{d}_{m}\cdot\vec{d}_{n} \end{array}$$

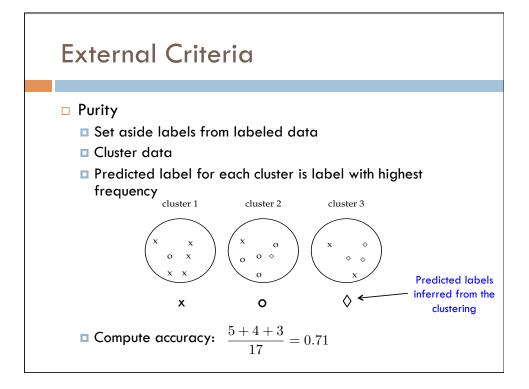
- Equivalent to the average similarity of all pairs of documents from different clusters
- Similarity between clusters can increase as we merge clusters (known as inversions)
 - Horizontal merge lines can be lower than the previous merge line











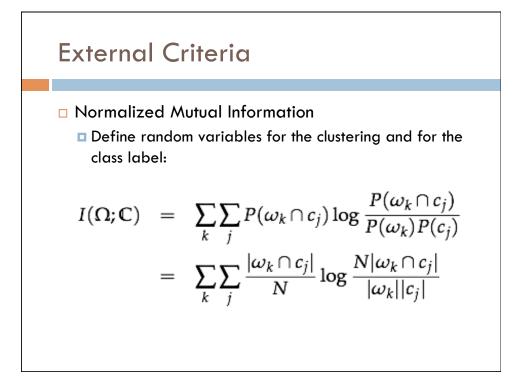
External Criteria

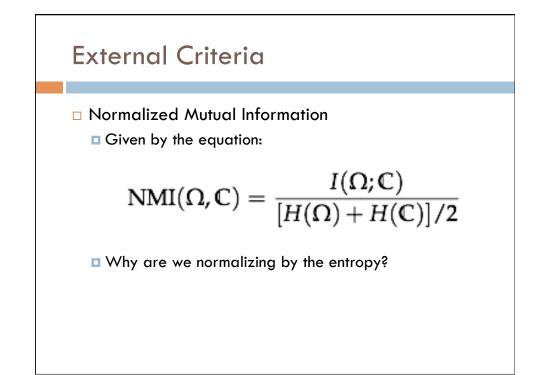
Normalized Mutual Information

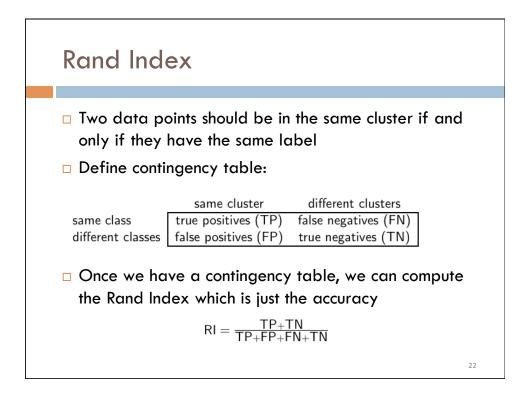
Mutual Information is an information theoretic quantity similar to entropy and information gain

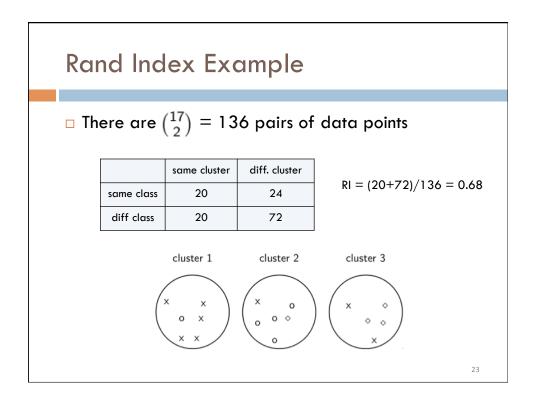
$$I(X, Y) = \sum_{y} \sum_{x} p(x, y) \log \frac{p(x, y)}{p(x)p(y)} = H(X) - H(X|Y)$$

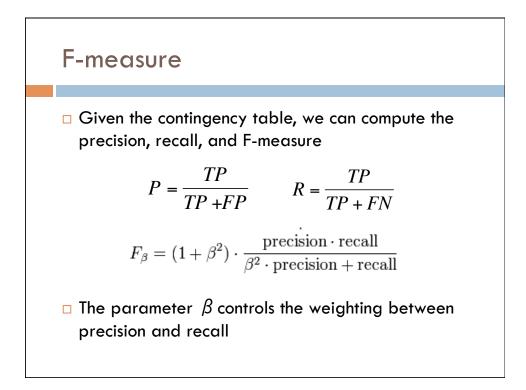
How much information does the clustering contain about the class labels?











Clustering Evaluation					
	purity	NMI	RI	F_5	
lower bound	0.0	0.0	0.0	0.0	
maximum	1.0	1.0	1.0	1.0	
value for example	0.71	0.36	0.68	0.46	
All four measures range from 0 (really bad clustering) to 1 (perfect clustering).					
					25