PROBABILITY

Progress Report

\square We've finished Part I: Problem Solving!
\square Part II: Reasoning with uncertainty
\square Probability
\square Bayesian networks
\square Reasoning over time (hidden Markov models)
\square Applications: tracking objects, speech recognition, medical diagnosis

Part III: Learning

Today

Reading

\square We're skipping to AIMA Chapter 13!

Goals
\square Random variables
\square Joint, marginal, conditional distributions
\square Product rule, chain rule, Bayes' rule
\square Inference
\square Independence

We're going to be using these concepts a lot so it's worth learning it well the first time!

Handling Uncertainty

The world is an uncertain place
\square Partially observable, non-deterministic
\square On the way to the bank, you get in a car crash!
\square Medical diagnosis
\square Driving to LAX (if you have to)
\square Sensors

Probability theory gives us a language to reason about an uncertain world.

Probability theory is beautiful!

Random variables

A random variable (rv) is a variable (that captures some quantity of interest) whose value is random
$\square X=$ the next word uttered by my professor (this is of great interest and importance)
$\square Y=$ the number of people that enter this building on a given day
$\square \mathrm{D}=$ the time it will take to drive to LAX
$\square \mathrm{W}=$ today's weather
\square Like variables in a CSP, random variables have domains
$\square X$ in $\{$ the, a, of, is, in, if, when, up, on,..., sky, shenanigans,...\}

- Y in $[0,1,2,3,4,5,6, \ldots, \infty)$
$\square \mathrm{D}$ in $[0, \infty)$
\square W in \{sun, rain, cloudy, snowy\}
\square A discrete rv has a countable domain
\square A continuous rv has an uncountable domain

Discrete Probability distribution

Each value (outcome) in the domain is associated with a realvalued number called a probability that reflects the chances of the random variable taking on that value

\mathbf{w}	$\mathbf{P}(\mathbf{W}=\mathbf{w})$
sunny	0.6
rain	0.1
cloudy	0.29
snow	0.01

probability
distributions
$\left\{\begin{array}{|c|c|}\hline \mathbf{x} & \mathbf{P}(\mathbf{X}=\mathbf{x}) \\ \hline \text { the } & .005 \\ \hline a & .002 \\ \hline \text { of } & .0001 \\ \hline \ldots & \ldots \\ \hline \text { shenanigans } & 10^{-9} \\ \hline\end{array}\right.$

Constraints for a valid probability distribution:

$$
0 \leq p(\omega) \leq 1 \text { such that } \sum_{\omega} p(\omega)=1
$$

Discrete Probability distribution

Constraints for a valid probability distribution:
$0 \leq p(\omega) \leq 1$ such that $\sum_{\omega} p(\omega)=1$

The total probability mass, which is 1 , is divided among the possible outcomes

Joint probability distribution

\square A joint distribution over a set of r.v.s $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ assigns probabilities to each possible assignment:

$$
\begin{gathered}
p\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gathered}
$$

$\mathbf{P}(W=w, T=t)$		
\mathbf{t}	\boldsymbol{t}	\mathbf{P}
sunny	hot	0.4
rain	hot	0.1
sunny	cold	0.2
rain	cold	0.3

Joint probability distribution

A joint distribution over a set of r.v.s $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ assigns probabilities to each possible assignment:

$$
\begin{gathered}
p\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gathered}
$$

Still subject to constraints:

$\mathbf{P}(\mathrm{W}=\mathrm{w}, \mathrm{T}=\mathrm{t})$		
\mathbf{w}	\mathbf{t}	\mathbf{P}
sunny	hot	0.4
rain	hot	0.1
sunny	cold	0.2
rain	cold	0.3

$0 \leq p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq 1 \quad$ and $\quad \sum_{\left(x_{1}, \ldots, x_{n}\right)} p\left(x_{1}, \ldots, x_{n}\right)=1$

Joint probability distribution

\square A joint distribution over a set of r.v.s $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ assigns probabilities to each possible assignment:

$$
\begin{gathered}
p\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gathered}
$$

Still subject to constraints:

$\mathbf{P}(W=w, T=t)$		
\mathbf{t}	\boldsymbol{t}	\mathbf{P}
sunny	hot	0.4
rain	hot	0.1
sunny	cold	0.2
rain	cold	0.3

$0 \leq p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq 1 \quad$ and $\quad \sum_{\left(x_{1}, \ldots, x_{n}\right)} p\left(x_{1}, \ldots, x_{n}\right)=1$

If we have n variables with domain size d, what is the size of the probability distribution (the number of rows in the table)?

Events

\square An event is a set E of outcomes
\square sunny AND hot $=\{($ sunny, hot $)\}$

- sunny $=\{($ sunny, hot), (sunny, cold) $\}$
\square sunny OR hot $=\{($ sunny, hot), (rainy, hot), (sunny, cold) $\}$

Events

\square An event is a set E of outcomes
\square sunny AND hot $=\{($ sunny, hot $)\}$
\square sunny $=\{($ sunny, hot), (sunny, cold) $\}$
\square sunny OR hot $=\{($ sunny, hot), (rainy, hot), (sunny, cold) $\}$
The joint distribution can be used to calculate the probability of an event

$$
p(E)=\sum_{\left(x_{1}, \ldots, x_{n}\right) \in E} p\left(x_{1}, \ldots, x_{n}\right)
$$

The probability of an event is the sum of the probability of the outcomes in the set

\mathbf{w}	\mathbf{t}	\mathbf{P}
sunny	hot	0.4
rain	hot	0.1
sunny	cold	0.2
rain	cold	0.3

Marginal Distributions

Sometimes we have the joint distribution but we're only interested in the distribution of a subset of the variables

- Called the marginal distribution
- We "marginalize out" the other variables by summing over them
\square Corresponds to a sub-table created by summing over rows

$\mathrm{P}(\mathrm{W}=\mathrm{w}, \mathrm{T}=\mathrm{t})$		
\mathbf{w}	\mathbf{t}	\mathbf{P}
sunny	hot	0.4
rain	hot	0.1
sunny	cold	0.2
rain	cold	0.3

$\xrightarrow{p(X=x)=\sum_{y} P(X=x, Y=y)}$

Oftentimes, the events we're interested in are marginal distributions
$\mathrm{P}(\mathrm{T}=\mathrm{t})$

\mathbf{t}	\mathbf{P}
hot	
cold	

Marginal Distributions

\square Sometimes we have the joint distribution but we're only interested in the distribution of a subset of the variables

- Called the marginal distribution
- We "marginalize out" the other variables by summing over them
- Corresponds to a sub-table created by summing over rows

$P(W=w, T=t)$			$p(X=x)=\sum P(X=x, Y=y)$	$\mathrm{P}(\mathrm{W}=\mathrm{w})$		
			w	P		
w	t	P		sunny	0.6	
sunny	hot	0.4		rain	0.4	
rain	hot	0.1		Oftentimes, the events we're interested in are marginal distributions	$P(T=t)$	
sunny	cold	0.2	\dagger		P	
rain	cold	0.3	hot		0.5	
			cold		0.5	

Conditional (posterior) distribution

\square Often, we observe some information (evidence) and we want to know the probability of an event conditioned on this evidence

In all the worlds where
$\mathrm{T}=$ cold, what is the
probability that $\mathrm{W}=$ sunny?
That $\mathrm{W}=$ rainy?

This is called the conditional distribution, e.g. the distribution of W conditioned on the evidence $\mathrm{T}=$ cold

Conditional (posterior) distribution

The conditional distribution is given by the equation

$$
p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}
$$

Conditional (posterior) distribution

The conditional distribution is given by the equation

$$
p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}
$$

Conditional (posterior) distribution

\square The conditional distribution is given by the equation

$$
p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}
$$

Conditional (posterior) distribution

The conditional distribution is given by the equation

$$
p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}
$$

Conditional (posterior) distribution

\square The conditional distribution is given by the equation

$$
p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}
$$

Conditional and Joint are just a constant apart!

$$
\begin{aligned}
& p(W=s \mid T=c)=\frac{p(W=s, T=c)}{p(T=c)}=\frac{0.2}{0.5}=0.4 \\
& p(W=r \mid T=c)=\frac{p(W=r, T=c)}{p(T=c)}=\frac{0.3}{0.5}=0.6
\end{aligned}
$$

\square Note that $\mathrm{p}(\mathrm{T}=\mathrm{c})$ is constant no matter the value of W
\square We call $\mathrm{p}(\mathrm{T}=\mathrm{c})$ a normalization constant because:

1. It is constant with respect to the distribution of interest $\mathrm{p}(\mathrm{W} \mid \mathrm{T}=\mathrm{c})$
2. It ensures that the distribution sums to 1 (i.e. it restores the distribution $\mathrm{p}(\mathrm{W} \mid \mathrm{T}=\mathrm{c})$ back to the "normal" condition of summing to 1)

Conditional and Joint are just a constant apart!

$$
\begin{gathered}
p(W=s \mid T=c)=\frac{p(W=s, T=c)}{p(T=c)}=\frac{0.2}{0.5}=0.4 \\
p(W=r \mid T=c)=\frac{p(W=r, T=c)}{p(T=c)}=\frac{0.3}{0.5}=0.6 \\
p(X, Y) \propto p(X \mid Y) \\
\text { "is proportional to" }
\end{gathered}
$$

Conditional and Joint are just a constant apart!

$$
\begin{gathered}
p(W=s \mid T=c)=\frac{p(W=s, T=c)}{p(T=c)}=\frac{0.2}{0.5}=0.4 \\
p(W=r \mid T=c)=\frac{p(W=r, T=c)}{p(T=c)}=\frac{0.3}{0.5}=0.6 \\
p(X, Y) \propto p(X \mid Y)
\end{gathered}
$$

Normalization
Trick

$$
<\frac{0.2}{0.2+0.3}, \frac{0.3}{0.2+0.3}>=<0.4,0.6>
$$

Normalization Trick

\square Step 1: Compute $Z=$ sum of $p(W, T=c)$ for all values of W
\square Step 2: Divide each joint probability by Z
\square (All we're doing is computing the prob. of evidence, i.e. $\mathrm{p}(\mathrm{T}=\mathrm{c})$, from the joint distribution by marginalizing over W)

$$
<\frac{0.2}{0.2+0.3}, \frac{0.3}{0.2+0.3}>=<0.4,0.6>
$$

Normalization Trick

\square Normalize the following distributions:

$\mathbf{P}(W=w, T=t)$		
\mathbf{w}	\boldsymbol{t}	\mathbf{P}
sunny	hot	0.4
rain	hot	0.1
sunny	cold	0.2
rain	cold	0.3

$$
\begin{aligned}
& \mathrm{p}(\mathrm{~W} \mid \mathrm{T}=\mathrm{hot}) \text { ? } \\
& \mathrm{p}(\mathrm{~W} \mid \mathrm{T}=\text { cold }) \text { ? } \\
& \mathrm{p}(\mathrm{~T} \mid \mathrm{W}=\text { sunny)? } \\
& \mathrm{p}(\mathrm{~T} \mid \mathrm{W}=\text { rainy }) \text { ? }
\end{aligned}
$$

Summary of distributions so far

$$
\begin{gathered}
\qquad(x)=\sum_{y} p(x, y) \\
\text { Conditional } \\
p(x \mid y)=\frac{p(x, y)}{p(y)}
\end{gathered}
$$

Probabilistic Inference

Probabilistic inference refers to the task of computing some desired probability given other known probabilities (evidence)

Typically compute the conditional (posterior) probability of an event

- p(on time | no accidents) $=0.80$
\square Probabilities change with new evidence
- p(on time | no accidents, 5 a.m.) $=0.95$
- p(on time | no accidents, 5 a.m., raining) $=0.8$

Inference by Enumeration

Have a set of random variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$

Partition the set of random variables into:

- Evidence variables: $E_{1}=e_{1}, E_{2}=e_{2}, \ldots E_{k}=e_{k}$

We're interested in computing:

- Query variables: Q
- Hidden (misc.) variables: $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{r}}$

Step One: select the entries in the table consistent with the evidence (this becomes our world)

Step Two: sum over the H variables to get the joint distribution of the query and evidence variables

Inference by Enumeration

Step One: select the entries in the table consistent with the evidence (this becomes our world)

Step Two: sum over the H Step Three: Normalize variables to get the joint distribution of the query and evidence variables
$\mathrm{p}(\mathrm{W} \mid \mathrm{S}=$ winter)?

S	W	\mathbf{T}	\mathbf{P}
summer	sunny	hot	0.30
summer	rain	hot	0.05
summer	sunny	cold	0.10
summer	rain	cold	0.05
winter	sunny	hot	0.10
winter	rain	hot	0.05
winter	sunny	cold	0.15
winter	rain	cold	0.20

Step One

Inference by Enumeration

Step One: select the entries in the table consistent with the evidence (this becomes our world)

Step Two: sum over the H variables to get the joint distribution of the query and evidence variables

$$
\mathrm{p}(\mathrm{~W} \mid \mathrm{S}=\text { winter }) ?
$$

\mathbf{S}	\mathbf{W}	\mathbf{T}	\mathbf{P}
winter	sunny	hot	0.10
winter	rain	hot	0.05
winter	sunny	cold	0.15
winter	rain	cold	0.20

Step Two

$$
p\left(Q, e_{1}, \ldots, e_{k}\right)=\sum_{\left(h_{1}, \ldots, h_{r}\right)} p\left(Q, e_{1}, \ldots, e_{k}, h_{1}, \ldots, h_{r}\right)
$$

Inference by Enumeration

Step One: select the entries in the table consistent with the evidence (this becomes our world)

Step Two: sum over the H Step Three: Normalize variables to get the joint distribution of the query and evidence variables
$\mathrm{p}(\mathrm{W} \mid \mathrm{S}=$ winter $)$?

\mathbf{S}	\mathbf{W}	\mathbf{T}	\mathbf{P}
winter	sunny	hot	0.10
winter	rain	hot	0.05
winter	sunny	cold	0.15
winter	rain	cold	0.20

Step Three
$Z=\sum_{q} p\left(Q=q, e_{1}, \ldots, e_{k}\right)$
$p\left(Q \mid e_{1}, \ldots, e_{k}\right)=\frac{1}{Z} \cdot p\left(Q, e_{1}, \ldots, e_{k}\right)$

Inference by Enumeration

Step One: select the entries in the table consistent with the evidence (this becomes our world)

Step Two: sum over the H Step Three: Normalize variables to get the joint distribution of the query and evidence variables

S	W	\mathbf{T}	\mathbf{P}
summer	sunny	hot	0.30
summer	rain	hot	0.05
summer	sunny	cold	0.10
summer	rain	cold	0.05
winter	sunny	hot	0.10
winter	rain	hot	0.05
winter	sunny	cold	0.15
winter	rain	cold	0.20

Queries:
$\mathrm{p}(\mathrm{W} \mid \mathrm{S}=$ winter, $\mathrm{T}=\mathrm{hot})$?
$p(S, W)$?
$\mathrm{p}(\mathrm{S}, \mathrm{W} \mid \mathrm{T}=\mathrm{hot})$?

Inference by Enumeration

$\square \mathrm{n}$ random variables
\square d domain size
\square Worst-case time is $O\left(d^{n}\right)$
\square Space is $O\left(d^{n}\right)$ to save entire table in memory
\square Is there something better?

