
2/6/14	

1	

ADVERSARIAL SEARCH

Today

¨  Reading
¤ AIMA Chapter 5.1-5.5, 5.7,5.8

¨  Goals
¤  Introduce adversarial games
¤ Minimax as an optimal strategy
¤ Alpha-beta pruning
¤  (Real-time decisions)

2/6/14	

2	

Questions to ask

¨  Were there any assumptions in your thinking?

¨  What was your strategy for choosing the optimal
move? Try to state your strategy in game-
independent terms

¨  How did you compensate for the fact that you
couldn’t “read” the game all the way to the end?

Adversarial Games

¨  People like games!
¨  Games are fun, engaging, and hard-to-solve
¨  Games are amenable to study: precise, easy-to-

represent state space

Game pieces found in a
burial site in Southeast

Turkey. Dated about 3000
BC

“Game of Twenty squares”
discovered in a burial site in Ur.
Dated about 2550-2400 BC Backgammon is also among

one of the oldest games still
played today

2/6/14	

3	

Adversarial Games

¨  Two-player games have been a focus of AI as long
as computers have been around

Solved: state space
was completely
mapped out!

Checkers
Backgammon and Chess

Computers can compete at a championship level

Go
Computers are still

at an amateur
club-level

Adversarial Games

¨  Humans and computers have different relative
strengths in game play

humans	
 computers 	

good at evaluating the
strength of a board

for a player

good at looking ahead in
the game to find winning

combinations of moves

2/6/14	

4	

How humans play games

An experiment (by deGroot) was performed in
which chess positions were shown to novice and
expert players.

experts could reconstruct these perfectly
novice players did far worse…

Random chess positions (not legal ones) were then
shown to the two groups

experts and novices did just as
badly at reconstructing them!

How computers play games

Search…!

2/6/14	

5	

Terminology

¨  deterministic vs. stochastic games
¨  initial state, successor function, goal test,…
¨  utility function: defines the final numeric value for a

game that ends in terminal state s for player p
¤ Chess: +1, 0, ½ for a win, loss, or draw

¨  zero-sum game: equal and opposite utilities
¤  If I win, you lose.
¤ Chess: 0 +1 , 1 + 0, ½ + ½

¨  policy: a function that maps from the set of states to
the set of possible actions

Branching factor and depth

 On average, there are fewer than 40 possible moves that a chess
player can make from any board configuration…	

Branching Factor Estimates
for different two-player games

Tic-tac-toe 4

Connect Four 7

Checkers 10

Othello 30

Chess 40

Go 300

0 Ply

1 Ply

2 Ply

Hydra at
home in
the
United
Arab
Emirates…

18 Ply!!

2/6/14	

6	

Simplified representation for two-
player games

¨  Two players: MAX and MIN
¨  MAX always moves first

¨  MAX wants high utility (payoff)

¨  MIN wants MAX to get low utility
(payoff)

Minimax: an optimal strategy

¨  An optimal strategy is one that is at least as good
as any other, no matter what the opponent does
¤  If there's a way to force the win, it will
¤ Will only lose if there's no other option

¨  Minimax is an optimal strategy assuming both
players play optimally

2/6/14	

7	

Minimax: an optimal strategy

57

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3

a1
a2

a3

b1

b2

b3 c1

c2

c3 d1

d2

d3

MIN

Figure 5.2 FILES: figures/minimax.eps (Tue Nov 3 16:23:11 2009). A two-ply game tree. The
! nodes are “MAX nodes,” in which it is MAX’s turn to move, and the " nodes are “MIN nodes.” The
terminal nodes show the utility values for MAX; the other nodes are labeled with their minimax values.
MAX’s best move at the root is a1, because it leads to the state with the highest minimax value, and
MIN’s best reply is b1, because it leads to the state with the lowest minimax value.

What action should MAX take?

Minimax: an optimal strategy

MINIMAX(s) =

8
<

:

UTILITY(s) if TERMINAL-TEST(s)
maxa MINIMAX(RESULT(s, a)) if PLAYER(s) = MAX
mina MINIMAX(RESULT(s, a)) if PLAYER(s) = MIN

H-MINIMAX(s,d) =

8
<

:

EVAL(s) if CUTOFF-TEST(s, d)
maxa H-MINIMAX(RESULT(s, a),d+ 1) if PLAYER(s) = MAX
mina H-MINIMAX(RESULT(s, a),d+ 1) if PLAYER(s) = MIN

1

If I did this, then
he would do

that, but then I
would do that,
and then he

would do this…

2/6/14	

8	

Minimax: An Optimal Strategy

Minimax Example: Baby Nim

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

2/6/14	

9	

Minimax Example

MAX

MIN

3 12 8 2 4 6 14 5 2

Properties of Minimax

¨  Minimax performs depth-first exploration of game
tree.
¤  Recall time complexity for DFS is O(bm)

¨  For chess, b ≈ 35, d ≈100 for "reasonable" games
¤  exact solution completely infeasible

¨  How can we find the exact solution faster?

2/6/14	

10	

Baby Nim
5

4 3

3 2 2 1

1 2

1 1 2 2

W

1

W 1 2 1 1 W

1 1 1 2 2 2

1 W W W W

W

1 1 1 1

1

2

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.0 1.0

-1.0 -1.0 -1.0 -1.0

1.0 1.0 1.0 -1.0

-1.0 1.0

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

Alpha-Beta Pruning

¨  Alpha-beta pruning: eliminate parts of game

tree that don’t affect the final result

¨  Consider a node n

¤  If a player has a better choice m (at a parent or

further up), then n will never be reached

¤ Once we know enough about n by looking at some

successors we can prune it.

2/6/14	

11	

Alpha-Beta Example

[-∞, +∞]

[-∞,+∞]

Do depth-first search until first leaf

Alpha-Beta Example

[-∞,3]

[-∞,+∞]

2/6/14	

12	

Alpha-Beta Example

[-∞, 3]

[-∞,+∞]

Alpha-Beta Example

[-∞,+∞]

[-∞,3]

2/6/14	

13	

Alpha-Beta Example

[3,+∞]

[-∞,3] [-∞,2] [3, +∞]

Alpha-Beta Example

[-∞,2] [3,3]

,

[-∞,2] [3, +∞]
[-∞,2] [-∞,2] [3, 14]

[3, +∞]

2/6/14	

14	

Alpha-Beta Example

[3,3]

, [3, +∞]

[3, 5] [3, +∞]

Alpha-Beta Example

[3,3]

[3, +∞]

[3, +∞] [3, 2]

3

2/6/14	

15	

Alpha-Beta pruning

Properties of α-β

¨  Pruning does not affect final result

¨  However, effectiveness of pruning affected by

order in which we examine successors

¨  What do you do if you don’t get to the bottom
of the tree on time?

