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The brain chip
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O
n a computer monitor in IBM’s 

brain lab here, a video taken from 

atop a tower on the Stanford Uni-

versity campus shows a steady 

stream of cars, bikes, buses, trucks, 

and pedestrians as they come and 

go. As each shape enters the scene, 

it’s briefly surrounded by a splash 

of color: purple for cy-

clists, green for pedestrians, dark 

blue for cars, sky blue for trucks, 

and yellow for buses. The colors 

signal the judgments made by a 

postage stamp–sized computer 

chip, which surveys the ever-

changing scene and identifies each on-screen 

target. “It gets almost everything right,” says 

Dharmendra Modha, an electrical and com-

puter engineer who leads the project at IBM’s 

Almaden Research Center in the hills beyond 

Silicon Valley. A bicyclist entering from the 

right is quickly wrapped in purple. But as the 

cyclist stops, dismounts, and starts to walk 

his bike, the color shifts to pedestrian green. 

Modha smiles. “We got a little lucky with that 

one,” he says.

Easy for a human, such pattern recog-

nition is a tour de force for a computer. 

On page 668 of this issue, Modha and col-

leagues at five IBM research cen-

ters and Cornell University describe 

the chip responsible for it: the 

first-ever production-scale “neuro-

morphic” computer chip designed 

to work more like a mammalian 

brain than like the processors in a 

laptop or smart phone. The new chip, called 

TrueNorth, marks a radical departure in chip 

design and promises to make computers 

better able to handle complex tasks such as 

image and voice recognition—jobs at which 

conventional chips struggle.

Progress in brain-inspired computing 

has been building for several years. Several 

U.S. and European labs are working on dif-

ferent versions of the technology. But out-

siders say TrueNorth has the potential to 

propel neuromorphic computing from an 

alluring research endeavor to a real-world 

technology.

TrueNorth contains 5.4 billion transistors 

wired together to form an array of 1 million 

digital “neurons” that talk to one another 

via 256 million “synapses.” Like the brains 

of organisms, this neural network archi-

tecture accomplishes complex tasks such 

as pattern recognition far more efficiently 

than conventional chips can. “It’s a tremen-

dous achievement,” says Wei Lu, an electri-

cal engineer and computer scientist at the 

University of Michigan, Ann Arbor. Horst 

Simon, a computer scientist and deputy 

director of the Lawrence Berkeley National 

Microprocessors modeled on networks of nerve cells promise blazing 
speed at incredibly low power—if they live up to hopes
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Laboratory in California, agrees. “This is 

a qualitative breakthrough to go from one 

computing paradigm to the next,” he says.

TO US, PERCEPTION seems so simple. We 

peer out the window of an office building 

and easily distinguish between a person on 

a bike and one on a skateboard. When we 

read a sentence that mentions a calico and 

a tabby, we understand that both are cats 

without having to be told. And with little ef-

fort we pick out the voice of the person we 

are talking to at a noisy cocktail party. By 

comparison, modern computers, for all their 

powers of calculation, remain infants at such 

tasks. State-of-the-art algorithms can crack 

these challenges, but they require massive 

computing power. Google, for example, re-

cently demonstrated a setup capable of rec-

ognizing cats and human faces in video clips. 

But the task required 16,000 processing 

chips and about 100 kilowatts of power. Our 

brains, by contrast, use just tens of watts.

Today’s chips are based on the same ar-

chitecture that was developed 7 decades 

ago by the Hungarian-born polymath John 

von Neumann. In 1945, von Neumann laid 

out modern computing’s basic design, with 

separate processing, memory, and control 

units. The architecture excels at perform-

ing sequences of logical operations and is 

ideal for crunching numbers and running 

spreadsheets and word processors. But it 

struggles when trying to integrate and pro-

cess large amounts of data, as vision and 

language processing demand.

The difficulty arises in the way conven-

tional chips carry out a task. To do anything 

useful, they must pull data in from stored 

memory, manipulate it, and send the result 

back to storage before tackling the next oper-

ation. Moving all that data back and forth de-

mands power and creates traffic bottlenecks. 

For decades, engineers have compensated 

by shrinking the transistors, communica-

tion lines, and other devices on chips. That 

shortened the distance data needed to travel, 

reduced the power demands of individual 

devices, and sped them up.

But this strategy is all but tapped out. In-

dividual device features in the latest chips 

are as small as 14 nanometers across—the 

width of fewer than 100 atoms, and close to 

the limits set by physics. To keep computer 

power on its upward trajectory, makers have 

resorted to tiling multiple processor chips 

side by side. That approach compounds the 

need to shuttle data—and the challenge of 

matching the skills of biology.

In 2012, for example, Modha and his col-

leagues used an IBM supercomputer called 

Sequoia at Lawrence Livermore National 

Laboratory in California to simulate the 

network communication in a human-scale 

brain. The simulation used conventional 

circuitry programmed to emulate the com-

munication among 500 billion neurons 

and 100 trillion synapses. All of Sequoia’s 

1.5 million processor chips and 1.5 petabytes 

(1.5 quadrillion bytes) of memory were de-

voted to the task—and even so, the simula-

tion ran at only 1/1500 the speed of a real 

brain. If the simulation had been scaled 

up to keep pace with actual “wetware,” it 

would have required 12 gigawatts of power, 

Modha says—the power consumption of Los 

Angeles and New York City combined.

Biology takes a different approach. Indi-

vidual neurons in our brains communicate 

with thousands of other neurons through 

chemical signals at connection points called 

synapses. When the combined chemical sig-

nals from a neuron’s partners exceed a cer-

tain threshold, it fires, creating an electrical 

spike that triggers it to pass chemical signals 

to other partners. And the communication 

ripples through the brain’s network, which 

in humans includes an estimated 100 billion 

neurons and 100 trillion synapses.

The setup needs no program: Connec-

tions to other neurons that fire regularly 

are reinforced, whereas those that don’t are 

pared away. In that way, the architecture 

itself learns. The strategy is also efficient, 

because once a nerve fires, it “forgets” all 

about the inputs that pushed it over the 

threshold and passes on only the fact that 

it fired. And it enables the brain to distrib-

ute information processing tasks. Separate 

groups of neurons in the visual cortex, for 

example, respond to horizontal and verti-

cal edges in a scene and pass those per-

ceptions to other neurons that integrate 

the information. This midlevel processing 

minimizes the need to shuttle data from 

one place to another. 

The upshot, says neuromorphic chip ex-

pert Gill Pratt, is that whereas conventional 

computer processors base their performance 

mainly on speed, the wetware in a brain re-

lies on the complexity of its network—which 

lowers energy consumption. That’s a sur-

vival advantage, says Pratt, who heads the 

SyNAPSE (Systems of Neuromorphic Adap-

tive Plastic Scalable Electronics) program 

at the Defense Advanced Research Projects 

Agency in Arlington, Virginia, which funds 

the IBM effort and a companion program at 

HRL Laboratories LLC in Malibu, Califor-

nia. “In nature, the most precious resource 

for most animals is food,” he explains. 

Nature’s emphasis on parallel process-

ing and complexity is at the heart of most 

attempts at neuromorphic computing. The 

term was coined in the 1980s by California 

Institute of Technology  electrical engineer 

Carver Mead to describe efforts to mimic 

neurological architectures using analog 

computer circuits—devices that, like neu-

rons, send signals only after inputs from 

their neighbors reach a predetermined 

threshold. But today, researchers apply the 

term more broadly to a range of analog, dig-

ital, hybrid, and even software systems. Like 

wetware, all neuromorphic systems distrib-

ute processing and memory tasks broadly 

across the chip to minimize the need to 

ferry data back and forth to central logic 

and memory hubs.

One effort, run by Narayan Srinivasa at 

HRL Laboratories, follows some of Mead’s 

One neuromorphic chip can spot patterns, such as 

clues that distinguish cyclists from pedestrians, as 

handily as an array of power-hungry processors.

Dharmendra Modha’s team at IBM aims to give com-

puters the perception skills of biological organisms.
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inspiration with analog circuitry. Srinivasa’s 

team has developed a silicon chip with ana-

log circuitry containing 576 neurons and 

73,000 synapses. In June, Srinivasa’s team 

showed that the chip could interpret visual 

signals well enough to pilot a palm-sized 

helicopter through a building. The chip 

picked up signals from an imaging sensor and 

used that information to determine whether 

it was in a new room or one that it had flown 

through previously. Because the setup uses 

analog circuitry, Srinivasa says, the chip can 

strengthen connections over time and thus 

learn and improve its performance.

Another project is being run by Stephen 

Furber of the University of Manchester in 

the United Kingdom. Known as SpiNNaker 

( S p i k i ng N e u r a l N e t w o r k A r c h i t e c t u r e ) , 

Furber’s system is a supercomputer con-

structed from conventional digital-based 

low-power computer chips, the sort com-

monly found in smart phones. SpiNNaker 

now consists of 20,000 chips, each of which 

represents 1000 neurons. This fall, Furber 

says, he expects that number will rise to 

100,000 chips representing 100 million neu-

rons, and eventually a 1-million-chip system 

representing 1 billion neurons—about 1% of 

the neurons in the human brain. Although 

similar in concept to the Sequoia simulation, 

SpiNNaker’s design is expected to model 

brain activity at speeds matching biology.

Furber says he and his colleagues aren’t 

building SpiNNaker for particular applica-

tions. For now, he says, the machine will 

serve as a testbed for computer scientists 

and neuroscientists to model brain func-

tion in a way that connects 

their small-scale knowl-

edge of neurons with the 

global insights of brain 

imaging and psychology. 

With SpiNNaker, “you can 

ask very detailed questions 

that are very difficult to 

ask in biology,” Furber says.

IBM’S TRUENORTH ALSO 

uses conventional digital 

devices. But in this case, 

Modha and his colleagues 

wired them in an entirely 

new hardware architec-

ture. So far, that’s enabled 

them to represent 16 times 

as many neurons on a 

single chip as previous ef-

forts could, thus speeding 

up its parallel processing at 

low power.

Modha and his col-

leagues unveiled their first 

attempt in 2011: a pencil 

tip–sized chip containing 

256 neurons and 262,000 synapses, a unit 

they refer to as a core. Their current chip 

contains an array of 4096 cores. “This is the 

largest chip IBM has ever made by a factor 

of 3,” Modha says. And because they used 

more advanced chipmaking techniques to 

build it, each of TrueNorth’s cores is just 

1/15 the size of the previous generation and 

consumes 1/100 as much power. That makes 

it more than 1000 times as efficient as chips 

made with the conventional architecture. 

Whereas a typical chip sucks down 50 to 

100 watts per square centimeter of chip 

space, TrueNorth sips just 20 milliwatts for 

the same area of circuitry.

Modha and his colleagues are already 

working to build on their success. They are 

testing arrays of up to 16 TrueNorth chips 

and are getting ready to push beyond that. 

Because each chip already represents an ar-

ray of cores wired together, it’s a straight-

forward task to tile more and more chips 

together to increase the computational 

power. On the drawing board are collections 

of 64, 256, 1024, and 4096 

chips. “It’s only limited by 

money, not imagination,” 

Modha says.

That’s just the hardware. 

To control it, Modha and 

his colleagues have also 

created a novel program-

ming language—a type of 

machine language for syn-

aptic chips. Modha says 

engineers have already 

used it to write hundreds 

of simple software rou-

tines called corelets that 

t e l l T r u e N o r t h ’s  n e u r a l 

network how to carry out 

c o m m o n c o m p u t a t i o n a l 

tasks. Vision corelets that 

spot features such as ver-

tical and horizontal edges 

helped TrueNorth distin-

guish the cars, cyclists, and 

pedestrians in the brain 

lab video, Modha says. 

Equipped with an array of 

these basic functions, pro-

grammers should be able to rework conven-

tional, inefficient neural network programs 

to run on the IBM chips. Thousands of such 

programs already exist for carrying out tasks 

such as visual and auditory recognition. The 

IBM chip should be able to run them far 

more quickly while drawing less power.

IBM hopes to commercialize the chips 

“sooner rather than later” and is looking 

into partnerships with other companies, 

Modha says. Meanwhile, he says, IBM 

plans to give computer scientists access to 

the chips to explore the cornucopia of new 

applications they should make possible. 

Berkeley Lab’s Simon thinks that in time 

the chips could lead to a new generation of 

power-efficient supercomputers. “There’s a 

huge potential here for addressing differ-

ent types of calculations that are currently 

done on [conventional chips] but less effi-

ciently,” Simon says.

Modha’s team has dreamed up some 

applications of its own. One of them, dis-

played in the team’s brain lab across the 

room from the video monitor tracking 

Stanford traffic, imagines an advanced ver-

sion of Google Glass that processes visual 

information and communicates it to visu-

ally impaired wearers. A blind person, for 

example, might receive auditory cues to 

avoid objects in her path. In a second exam-

ple, called Tumbleweed, a robot outfitted 

with multiple sensors rolls its way around a 

dangerous environment, such as the inside 

of a damaged nuclear reactor, and beams 

back visual, temperature, chemical, and 

radiation data. In the nearer term, Furber 

suggests, neuromorphic chips could be in-

tegrated into smart phones to improve their 

visual and voice recognition.

To encourage such applications, IBM 

has set up a virtual school, called Synapse 

University, where computer scientists and 

researchers can learn how to program the 

new chips to do whatever they want. “If 

IBM can do that, I’m sure lots of people 

will have fun with it and do real science,” 

Furber says. And eventually, perhaps, com-

puters will begin to emerge from their in-

fancy in carrying out everyday tasks that 

we take for granted. ■

Neuromorphic chips could lead to 

rolling robots (top) that beam back 

data from hazardous environments 

or to navigation aids for the blind.

Each TrueNorth chip contains 

5.4 billion transistors wired into 

an array of 1 million neurons and 

256 million synapses. Efforts are 

already under way to tile more 

than a dozen such chips together.
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