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UNINFORMED AND 
INFORMED SEARCH 

Step One: Formulate the search problem 

A well-defined search problem includes: 
¨  states 
¨  initial state 
¨  actions 
¨  successor function 
¨  goal test 
¨  path cost (reflects performance measure) 

Induce the state space graph 
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Step One: Vacuum world 

¨  states? 
¨  initial state? 
¨  actions? 
¨  successor function? 
¨  goal test? 
¨  path cost? 

There are 8 states: all possible configuration of dirt and position of the vacuum. There are 
four actions: Left, Right, NoOp, and Suck. The successor function is just the resulting state 
after taking the action. The goal state is no dirt and the vacuum in either A or B. The path 
cost is 1 per action. 

Step One: Path to Bucharest 

¨  states? 
¨  initial state? 
¨  actions? 
¨  successor function? 
¨  goal test? 
¨  path cost? 
¨  What does the state space graph look like? 
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

states are the cities. Initial state is Arad. Actions are to take a road leading out of the current 
city. Successor function is the destination city. The goal test is Bucharest. The path cost might be 
1 for each action or it could be the distance btw. two cities. 
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Step One: 8-puzzle 

¨  states? 
¨  initial state? 
¨  actions? 
¨  successor function? 
¨  goal test? 
¨  path cost? 
¨  What does the state space look like? 
states – all possible configurations of the 8 tiles and the blank space 
actions – move the blank space UP, DOWN, LEFT, RIGHT 
path cost – a cost of 1 per action 

Step One: 8-queens puzzle 

¨  states? 
¨  initial state? 
¨  actions? 
¨  goal test? 
¨  path cost? 
¨  What does the state space look like? 

incremental formulation: Initial state is a blank board. An action is to place a queen in the 
leftmost empty column (such that it is not in conflict with any previously placed queens) 
Complete-state formulation: Initial state is 8 queens on the board. An action is to move a 
queen. 
Note the path cost is irrelevant. We care only about the final configuration. 
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Step Two: Search 

¨  Basic Idea 
¤  Pick a node 
¤  If not goal state 

n  expand node by generating all its successors 
n  mark node as explored 

¤  Repeat till goal found 
 

¨  Necessary data structures 
¤  frontier - nodes that were generated but not yet expanded 
¤  (explored - nodes that have been expanded) 

Graph-search 

function GRAPH-SEARCH(problem, strategy) returns a solution or failure 

 initialize the frontier using the initial state of problem 

 initialize explored set to empty   

 loop do 

  if the frontier is empty return failure 

  choose leaf node according to strategy and remove from frontier 

  if node contains goal state return solution 

  add node to explored set 

  expand chosen node and add resulting nodes to frontier 
  only if not in frontier or explored set 
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Search Strategies 

A search strategy specifies the order in which nodes are 
selected from the frontier to be expanded 

Breadth-first search (BFS) 

¨  Expand shallowest unexpanded node 
¨  Implementation: frontier is a FIFO queue 
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Depth-first search (DFS) 

¨  Expand deepest unexpanded node 
¨  Implementation: frontier is a LIFO queue (stack) 
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Evaluating search algorithm 

¨  Time (Big-O)  
¤ approximately the number of nodes generated (frontier 

plus explored list) 
¨  Space (Big-O) 

¤  the max # of nodes stored in memory at any time 
¨  Complete (yes/no) 

¤  If a solution exists, will we find it? 
¨  Optimal (yes/no) 

¤  If we return a solution, will it be the best/optimal 
solution, i.e. solution with lowest path cost 
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Today 

¨  Reading 
¤ AIMA Section 3.1-3.4 (uninformed search) 
¤ AIMA 3.5-3.6 (informed search) 

¨  Objectives 
¤ Analyzing the complexity of search algorithms 
¤ UCS, DL-DFS, ID-DFS 
¤ Start on informed search algorithms 

Evaluating search algorithm 

¨  Time (Big-O)  
¤ approximately the number of nodes generated (frontier 

plus explored list) 
¨  Space (Big-O) 

¤  the max # of nodes stored in memory at any time 
¨  Complete (yes/no) 

¤  If a solution exists, will we find it? 
¨  Optimal (yes/no) 

¤  If we return a solution, will it be the best/optimal 
solution, i.e. solution with lowest path cost 
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Notation 

¨  b – branching factor, i.e. max number of successors of any node 

¨  d – depth of the shallowest goal node 

¨  m – maximum length of any path in state space 

Number of nodes 
b0 = 1 node 
 
b1 nodes 
 
b2 nodes 
 
 

bd nodes 
 
 
 
 
 
 

bm nodes 

Depth 
0 
 
1 
 
2 
 
 

d 
 
 
 
 

m 

… 

… 

Analyzing BFS 

¨  Time: O(bd) 

¨  Space: O(bd) 

¨  Complete = YES if branching factor is finite 

¨  Optimal = YES if path cost is non-decreasing function 

of depth of the node 

¨  (Use when step costs are constant) 
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Analyzing DFS 

¨  Time (for Tree-Search): O(bm) 

¨  Space (for Tree-Search): O(bm) 

¨  Complete = YES, if space is finite (and no circular 
paths), NO otherwise 

¨  Optimal = NO 

Time and memory requirements for BFS 

Depth Nodes Time Memory 

2 1100 .11 sec 1 MB 
4 111,100 11 sec 106 MB 
6 107 19 min 10 GB 
8 109 31 hours 1 terabyte 

10 1011 129 days 101 terabytes 
12 1013 35 years 10 petabytes 

14 1015 3,523 years 1 exabyte 

BFS with b=10; 10,000 nodes/sec; 10 bytes/node 
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Uniform-cost search 

¨  Expand node with lowest path cost 
¨  Implementation: 

¤  frontier is a priority queue ordered by path cost 
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Figure 3.15 FILES: figures/romania-subgraph.eps (Tue Nov 3 13:48:07 2009). Part of the Ro-
mania state space, selected to illustrate uniform-cost search.

Analyzing Uniform-cost search 

¨  Let C* be the cost of the optimal solution and εbe the 
minimum step cost 

 
¨  Time: O(bC*/ε) 

¨  Space: O(bC*/ε) 
 
¨  Complete = YES if step cost exceeds epsilon 

¨  Optimal = YES 
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Depth limited DFS 

¨  DFS, but with a depth limit L specified 
¤ Nodes at depth L are treated as if they have no successors 
¤ We only search down to depth L 

¨  Time? 
¤ O(bL) 

¨  Space? 
¤ O(bL) 

¨  Complete? 
¤ No, if solution is longer than L 

¨  Optimal 
¤ No, for same reasons DFS isn’t 

Iterative deepening search (IDS) 

¨  Blends the benefits of BFS and DFS 
¤  searches in a similar order to BFS 
¤ but has the memory requirements of DFS 

¨  Will find the solution when L is the depth of the 
shallowest goal 

for L=0, 1, 2, … 
run depth-limited DFS with depth limit L 
if solution found return result 
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Iterative deepening search (IDS) 
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Time complexity for IDS 

¨  L = 0:  1 
¨  L = 1:  1 + b 
¨  L = 2:  1 + b + b2 
¨  L = 3:  1 + b + b2 + b3 
¨  … 
¨  L = d:  1 + b + b2 + b3 + … + bd 
¨  Overall: 

¤  (d+1)(1) + (d)b + (d-1)b2 + (d-2)b3 + … + bd 

¤ O(bd) 

¤ Cost of the repeat of the lower levels is subsumed by the 
cost at the highest level  
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Analysis of IDS 

¨  Space 
¤ O(bd) 

¨  Complete? 
¤ Yes 

¨  Optimal? 
¤ Yes 

Summary of Uninformed Search 

¨  Step One: Formulate the search problem 
¨  Step Two: Search 

¤ Breadth-first search (queue) 
¤ Depth-first search (stack) 
¤ Uniform cost search (priority queue) 
¤  Iterative-deepening DFS (ID-DFS) 

¨  Analyze search algorithms 
¤ Time, Space, Completeness, Optimality 
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Informed search (best-first search) 

¨  Intuition: use information beyond the problem to guide 
the search process to promising regions 

¨  Define an evaluation function f(n) for each node n 

¤ estimates “desirability” of node 

¤ choose most desirable node from frontier (priority queue) 

¨  Choices for f(n) 
¤ g(n) = distance from start node to node n 

¤ h(n) = estimate of distance to goal node (heuristic function) 

Informed search (best-first search) 

¨  Uninformed search 
¤ BFS: FIFO queue 

¤ DFS: LIFO queue 

¤ UCS: priority queue with f(n) = g(n) 

¨  Informed search 

¤ Greedy Best-First: priority queue with f(n) = h(n)  

¤ A*: priority queue with f(n) = g(n) + h(n) 

g(n) = distance from start   h(n) = estimate to goal 
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Heuristic functions 

¨  An heuristic function h(n) estimates the cost from n to 
the goal 
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

Heuristic functions 

¨  An heuristic function h(n) estimates the cost from n to 
the goal 
¤ Example: straight-line distance 
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Figure 3.22 FILES: figures/romania-sld.eps (Tue Nov 3 16:23:37 2009). Values of hSLD—
straight-line distances to Bucharest.
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

h(n) = straight-line distance 
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A* search 

¨  Developed in 1968 by Hart et al. as a principled 
framework for using heuristic information to find 
minimum cost paths 

¨  Evaluation function f(n) is the distance from the start 
g(n) plus the estimate to goal h(n) 

A* search example 
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.
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A* search: conditions for optimality 

¨  A heuristic h(n) is admissable if it never overestimates the 
cost to the goal 

  0 ≤ h(n) ≤ h*(n)  h*(n) is true cost to goal 

¨  A heuristic h(n) is consistent if  

  h(n) ≤ c(n, a, n’) + h(n’)  n’ is a successor 
 

¨  Tree-search version of A* is optimal if h(n) is admissable 

¨  Graph-search version of A* is optimal if h(n) is consistent 

 

Properties of A* search 

¨  A* expands  

¤  all nodes with f(n) < C* 

¤  some nodes with f(n) = C* 

¤  no nodes with f(n) > C* 

¨  Optimally efficient 

¨  Complete if finite number of nodes with f(n) ≤ C* 

30 Chapter 3. Solving Problems by Searching
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Figure 3.25 FILES: figures/f-circles.eps (Tue Nov 3 16:22:45 2009). Map of Romania showing
contours at f = 380, f = 400, and f = 420, with Arad as the start state. Nodes inside a given contour
have f -costs less than or equal to the contour value.
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Creating admissable heuristic functions 

¨  How do we construct a heuristic function that doesn’t 
overestimate the cost to the goal? 

¨  What are some ideas for heuristic functions? 

Creating admissable heuristic functions 

¨  Two-well used heuristics: 
¤  h1 = number of misplaced tiles 
¤  h2 = sum of the distances of the tiles from goal positions 

(Manhattan distance) 

Why are these admissable? 
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Creating admissable heuristic functions 

¨  Often admissable heuristics are solutions to relaxed problems with 
fewer restrictions 

¨  A tile can move from square A to square B if 
¤  A is horizontally or vertically adjacent to B 
¤  B is blank 

Creating admissable heuristic functions 

¨  Often admissable heuristics are solutions to relaxed problems with 
fewer restrictions 

¨  A tile can move from square A to square B if 
¤  A is horizontally or vertically adjacent to B 
¤  B is blank 

¨  Induces h1 heuristic, i.e. number of tiles out of place 
¤  Allows you to pick up the tiles and place in the correct spot 

Number nodes expanded for solution depth d 

d = 4 d = 8 d= 12 

IDS 112 6384 3.6 million 

A*(h1) 13 39 227 

relax the 
rules 
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Creating admissable heuristic functions 

¨  Often admissable heuristics are solutions to relaxed problems with 
fewer restrictions 

¨  A tile can move from square A to square B if 
¤  A is horizontally or vertically adjacent to B 
¤  B is blank 

¨  Induces h2 heuristic, i.e. sum of distances to goal position 
¤  Allows you to move a tile to an adjacent square 

Number nodes expanded for solution depth d 

d = 4 d = 8 d= 12 

IDS 112 6384 3.6 million 

A*(h1) 13 39 227 

A*(h2) 12 25 73 

relax the 
rules 

Creating admissable heuristic functions 

Number nodes expanded for solution depth d 

d = 4 d = 8 d= 12 

IDS 112 6384 3.6 million 

A*(h1) 13 39 227 

A*(h2) 12 25 73 

expands 
fewer 
nodes 
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Creating admissable heuristic functions 

¨  Some heuristics are better than others 

¤  If h1(n) ≤ h2(n) ≤ h*(n) then h2 dominates h1 

¤ Manhattan distance dominates tiles out of place 

¤ A-star search using h2 will never expand more nodes 

than A-star search using h1 

¤ Can combine admissable heuristics using max 

Informed search summary 

¨  Uses additional information to guide search process 

¤  UCS – cost from start node 

¤  Greedy best-first – estimate of cost to goal 

¤  A* uses both cost from start + estimate to goal 

¤  A* is optimal with admissable/consistent heuristic 

¨  A good heuristic is the key! 

¤  Consider solutions to relaxed problems 


