
9/10/14	

1	

UNINFORMED AND
INFORMED SEARCH

Step One: Formulate the search problem

A well-defined search problem includes:
¨  states
¨  initial state
¨  actions
¨  successor function
¨  goal test
¨  path cost (reflects performance measure)

Induce the state space graph

9/10/14	

2	

Step One: Vacuum world

¨  states?
¨  initial state?
¨  actions?
¨  successor function?
¨  goal test?
¨  path cost?

There are 8 states: all possible configuration of dirt and position of the vacuum. There are
four actions: Left, Right, NoOp, and Suck. The successor function is just the resulting state
after taking the action. The goal state is no dirt and the vacuum in either A or B. The path
cost is 1 per action.

Step One: Path to Bucharest

¨  states?
¨  initial state?
¨  actions?
¨  successor function?
¨  goal test?
¨  path cost?
¨  What does the state space graph look like?

14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

states are the cities. Initial state is Arad. Actions are to take a road leading out of the current
city. Successor function is the destination city. The goal test is Bucharest. The path cost might be
1 for each action or it could be the distance btw. two cities.

9/10/14	

3	

Step One: 8-puzzle

¨  states?
¨  initial state?
¨  actions?
¨  successor function?
¨  goal test?
¨  path cost?
¨  What does the state space look like?
states – all possible configurations of the 8 tiles and the blank space
actions – move the blank space UP, DOWN, LEFT, RIGHT
path cost – a cost of 1 per action

Step One: 8-queens puzzle

¨  states?
¨  initial state?
¨  actions?
¨  goal test?
¨  path cost?
¨  What does the state space look like?

incremental formulation: Initial state is a blank board. An action is to place a queen in the
leftmost empty column (such that it is not in conflict with any previously placed queens)
Complete-state formulation: Initial state is 8 queens on the board. An action is to move a
queen.
Note the path cost is irrelevant. We care only about the final configuration.

9/10/14	

4	

Step Two: Search

¨  Basic Idea
¤  Pick a node
¤  If not goal state

n  expand node by generating all its successors
n  mark node as explored

¤  Repeat till goal found

¨  Necessary data structures
¤  frontier - nodes that were generated but not yet expanded
¤  (explored - nodes that have been expanded)

Graph-search

function GRAPH-SEARCH(problem, strategy) returns a solution or failure

 initialize the frontier using the initial state of problem

 initialize explored set to empty

 loop do

 if the frontier is empty return failure

 choose leaf node according to strategy and remove from frontier

 if node contains goal state return solution

 add node to explored set

 expand chosen node and add resulting nodes to frontier
 only if not in frontier or explored set

9/10/14	

5	

Search Strategies

A search strategy specifies the order in which nodes are
selected from the frontier to be expanded

Breadth-first search (BFS)

¨  Expand shallowest unexpanded node
¨  Implementation: frontier is a FIFO queue

A

Z

O

S
F

RV
P

B

T D

9/10/14	

6	

Depth-first search (DFS)

¨  Expand deepest unexpanded node
¨  Implementation: frontier is a LIFO queue (stack)

A

Z

O

S
F

RV
P

B

T D

Evaluating search algorithm

¨  Time (Big-O)
¤ approximately the number of nodes generated (frontier

plus explored list)
¨  Space (Big-O)

¤  the max # of nodes stored in memory at any time
¨  Complete (yes/no)

¤  If a solution exists, will we find it?
¨  Optimal (yes/no)

¤  If we return a solution, will it be the best/optimal
solution, i.e. solution with lowest path cost

9/10/14	

7	

Today

¨  Reading
¤ AIMA Section 3.1-3.4 (uninformed search)
¤ AIMA 3.5-3.6 (informed search)

¨  Objectives
¤ Analyzing the complexity of search algorithms
¤ UCS, DL-DFS, ID-DFS
¤ Start on informed search algorithms

Evaluating search algorithm

¨  Time (Big-O)
¤ approximately the number of nodes generated (frontier

plus explored list)
¨  Space (Big-O)

¤  the max # of nodes stored in memory at any time
¨  Complete (yes/no)

¤  If a solution exists, will we find it?
¨  Optimal (yes/no)

¤  If we return a solution, will it be the best/optimal
solution, i.e. solution with lowest path cost

9/10/14	

8	

Notation

¨  b – branching factor, i.e. max number of successors of any node

¨  d – depth of the shallowest goal node

¨  m – maximum length of any path in state space

Number of nodes
b0 = 1 node

b1 nodes

b2 nodes

bd nodes

bm nodes

Depth
0

1

2

d

m

…

…

Analyzing BFS

¨  Time: O(bd)

¨  Space: O(bd)

¨  Complete = YES if branching factor is finite

¨  Optimal = YES if path cost is non-decreasing function

of depth of the node

¨  (Use when step costs are constant)

9/10/14	

9	

Analyzing DFS

¨  Time (for Tree-Search): O(bm)

¨  Space (for Tree-Search): O(bm)

¨  Complete = YES, if space is finite (and no circular
paths), NO otherwise

¨  Optimal = NO

Time and memory requirements for BFS

Depth Nodes Time Memory

2 1100 .11 sec 1 MB
4 111,100 11 sec 106 MB
6 107 19 min 10 GB
8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes
12 1013 35 years 10 petabytes

14 1015 3,523 years 1 exabyte

BFS with b=10; 10,000 nodes/sec; 10 bytes/node

9/10/14	

10	

Uniform-cost search

¨  Expand node with lowest path cost
¨  Implementation:

¤  frontier is a priority queue ordered by path cost

23

Sibiu Fagaras

Pitesti

Rimnicu Vilcea

Bucharest

99

80

97

101

211

Figure 3.15 FILES: figures/romania-subgraph.eps (Tue Nov 3 13:48:07 2009). Part of the Ro-
mania state space, selected to illustrate uniform-cost search.

Analyzing Uniform-cost search

¨  Let C* be the cost of the optimal solution and εbe the
minimum step cost

¨  Time: O(bC*/ε)

¨  Space: O(bC*/ε)

¨  Complete = YES if step cost exceeds epsilon

¨  Optimal = YES

9/10/14	

11	

Depth limited DFS

¨  DFS, but with a depth limit L specified
¤ Nodes at depth L are treated as if they have no successors
¤ We only search down to depth L

¨  Time?
¤ O(bL)

¨  Space?
¤ O(bL)

¨  Complete?
¤ No, if solution is longer than L

¨  Optimal
¤ No, for same reasons DFS isn’t

Iterative deepening search (IDS)

¨  Blends the benefits of BFS and DFS
¤  searches in a similar order to BFS
¤ but has the memory requirements of DFS

¨  Will find the solution when L is the depth of the
shallowest goal

for L=0, 1, 2, …
run depth-limited DFS with depth limit L
if solution found return result

9/10/14	

12	

Iterative deepening search (IDS)

A

Z

O

S
F

RV
P

B

T D

Time complexity for IDS

¨  L = 0: 1
¨  L = 1: 1 + b
¨  L = 2: 1 + b + b2
¨  L = 3: 1 + b + b2 + b3
¨  …
¨  L = d: 1 + b + b2 + b3 + … + bd
¨  Overall:

¤  (d+1)(1) + (d)b + (d-1)b2 + (d-2)b3 + … + bd

¤ O(bd)

¤ Cost of the repeat of the lower levels is subsumed by the
cost at the highest level

9/10/14	

13	

Analysis of IDS

¨  Space
¤ O(bd)

¨  Complete?
¤ Yes

¨  Optimal?
¤ Yes

Summary of Uninformed Search

¨  Step One: Formulate the search problem
¨  Step Two: Search

¤ Breadth-first search (queue)
¤ Depth-first search (stack)
¤ Uniform cost search (priority queue)
¤  Iterative-deepening DFS (ID-DFS)

¨  Analyze search algorithms
¤ Time, Space, Completeness, Optimality

9/10/14	

14	

Informed search (best-first search)

¨  Intuition: use information beyond the problem to guide
the search process to promising regions

¨  Define an evaluation function f(n) for each node n

¤ estimates “desirability” of node

¤ choose most desirable node from frontier (priority queue)

¨  Choices for f(n)
¤ g(n) = distance from start node to node n

¤ h(n) = estimate of distance to goal node (heuristic function)

Informed search (best-first search)

¨  Uninformed search
¤ BFS: FIFO queue

¤ DFS: LIFO queue

¤ UCS: priority queue with f(n) = g(n)

¨  Informed search

¤ Greedy Best-First: priority queue with f(n) = h(n)

¤ A*: priority queue with f(n) = g(n) + h(n)

g(n) = distance from start h(n) = estimate to goal

9/10/14	

15	

Heuristic functions

¨  An heuristic function h(n) estimates the cost from n to
the goal

14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

Heuristic functions

¨  An heuristic function h(n) estimates the cost from n to
the goal
¤ Example: straight-line distance

27

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Drobeta
Craiova

Fagaras

Iasi

 0
160
242
161

77
151

366

244
226

176

241

253
329
80

199

380
234

374

100
193

Figure 3.22 FILES: figures/romania-sld.eps (Tue Nov 3 16:23:37 2009). Values of hSLD—
straight-line distances to Bucharest.

14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

h(n) = straight-line distance

9/10/14	

16	

A* search

¨  Developed in 1968 by Hart et al. as a principled
framework for using heuristic information to find
minimum cost paths

¨  Evaluation function f(n) is the distance from the start
g(n) plus the estimate to goal h(n)

A* search example

14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

9/10/14	

17	

A* search: conditions for optimality

¨  A heuristic h(n) is admissable if it never overestimates the
cost to the goal

 0 ≤ h(n) ≤ h*(n) h*(n) is true cost to goal

¨  A heuristic h(n) is consistent if

 h(n) ≤ c(n, a, n’) + h(n’) n’ is a successor

¨  Tree-search version of A* is optimal if h(n) is admissable

¨  Graph-search version of A* is optimal if h(n) is consistent

Properties of A* search

¨  A* expands

¤  all nodes with f(n) < C*

¤  some nodes with f(n) = C*

¤  no nodes with f(n) > C*

¨  Optimally efficient

¨  Complete if finite number of nodes with f(n) ≤ C*

30 Chapter 3. Solving Problems by Searching

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Figure 3.25 FILES: figures/f-circles.eps (Tue Nov 3 16:22:45 2009). Map of Romania showing
contours at f = 380, f = 400, and f = 420, with Arad as the start state. Nodes inside a given contour
have f -costs less than or equal to the contour value.

9/10/14	

18	

Creating admissable heuristic functions

¨  How do we construct a heuristic function that doesn’t
overestimate the cost to the goal?

¨  What are some ideas for heuristic functions?

Creating admissable heuristic functions

¨  Two-well used heuristics:
¤  h1 = number of misplaced tiles
¤  h2 = sum of the distances of the tiles from goal positions

(Manhattan distance)

Why are these admissable?

9/10/14	

19	

Creating admissable heuristic functions

¨  Often admissable heuristics are solutions to relaxed problems with
fewer restrictions

¨  A tile can move from square A to square B if
¤  A is horizontally or vertically adjacent to B
¤  B is blank

Creating admissable heuristic functions

¨  Often admissable heuristics are solutions to relaxed problems with
fewer restrictions

¨  A tile can move from square A to square B if
¤  A is horizontally or vertically adjacent to B
¤  B is blank

¨  Induces h1 heuristic, i.e. number of tiles out of place
¤  Allows you to pick up the tiles and place in the correct spot

Number nodes expanded for solution depth d

d = 4 d = 8 d= 12

IDS 112 6384 3.6 million

A*(h1) 13 39 227

relax the
rules

9/10/14	

20	

Creating admissable heuristic functions

¨  Often admissable heuristics are solutions to relaxed problems with
fewer restrictions

¨  A tile can move from square A to square B if
¤  A is horizontally or vertically adjacent to B
¤  B is blank

¨  Induces h2 heuristic, i.e. sum of distances to goal position
¤  Allows you to move a tile to an adjacent square

Number nodes expanded for solution depth d

d = 4 d = 8 d= 12

IDS 112 6384 3.6 million

A*(h1) 13 39 227

A*(h2) 12 25 73

relax the
rules

Creating admissable heuristic functions

Number nodes expanded for solution depth d

d = 4 d = 8 d= 12

IDS 112 6384 3.6 million

A*(h1) 13 39 227

A*(h2) 12 25 73

expands
fewer
nodes

9/10/14	

21	

Creating admissable heuristic functions

¨  Some heuristics are better than others

¤  If h1(n) ≤ h2(n) ≤ h*(n) then h2 dominates h1

¤ Manhattan distance dominates tiles out of place

¤ A-star search using h2 will never expand more nodes

than A-star search using h1

¤ Can combine admissable heuristics using max

Informed search summary

¨  Uses additional information to guide search process

¤  UCS – cost from start node

¤  Greedy best-first – estimate of cost to goal

¤  A* uses both cost from start + estimate to goal

¤  A* is optimal with admissable/consistent heuristic

¨  A good heuristic is the key!

¤  Consider solutions to relaxed problems

