SUPPORT VECTOR MACHINES

Today

\square Reading

- AIMA 18.9 (SVMs)
\square Goals
- Finish Backpropagation
\square Support vector machines

Backpropagation

1. Begin with randomly initialized weights
2. Apply the neural network to each training example (each pass through examples is called an epoch)
3. If it misclassifies an example modify the weights
4. Continue until the neural network classifies all training examples correctly
(Derive gradient-descent update rule)

Backpropagation

```
function BACK-Prop-LEARNING(examples, network) returns a neural network
    inputs: examples, a set of examples, each with input vector }\mathbf{x}\mathrm{ and output vector y
    network, a multilayer network with L layers, weights wi,j}\mathrm{ , activation function }
    local variables: }\Delta\mathrm{ , a vector of errors, indexed by network node
    repeat
        for each weight wi,j}\mathrm{ in network do
            wi,j}\leftarrow\mathrm{ a small random number
        for each example (x,y) in examples do
            /* Propagate the inputs forward to compute the outputs */
            for each node i in the input layer do
            \mp@subsup{a}{i}{}\leftarrow\mp@subsup{x}{i}{}
            or }\ell=2\mathrm{ to }L\mathrm{ do
                for each node j in layer \ell do
                    in}\mp@subsup{n}{j}{\leftarrow}\leftarrow\mp@subsup{\sum}{i}{}\mp@subsup{w}{i,j}{
                aj\leftarrowg(in
            /* Propagate deltas backward from output layer to input layer */
            for each node j in the output layer do
                \Delta[j]\leftarrowg'(inj) \times (yj - aj}
            or \ell=L-1 to 1 do
                for each node }i\mathrm{ in layer }\ell\mathrm{ do
                \Delta[i]\leftarrowg'(ini) \sum w wi,j
            / * Update every weight in network using deltas */
            for each weight wi,j in network do
                wi,j\leftarroww\mp@subsup{w}{i,j}{}+\alpha\times\mp@subsup{a}{i}{}\times\Delta[j]
    until some stopping criterion is satisfied
    return network
    Figure 18.24 The back-propagation algorithm for learning in multilayer networks.
```


Support Vector Machines (SVMs)

\square SVMs are probably the most popular off-the-shelf classifier!

Software Packages
\square LIBSVM (LIBLINEAR) - on the Resources page \square SVM-Light

Which is the best decision boundary?

x_{1}	x_{2}	x_{1} and x_{2}	
0	0	0	\bullet
0	1	0	\bullet
1	0	0	\bullet
1	1	1	\bullet

x_{1}	x_{2}	x_{1} or x_{2}	
0	0	0	\bullet
0	1	1	\bullet
1	0	1	\bullet
1	1	1	\bullet

Support Vector Machines

What defines a hyperplane?

What defines a hyperplane?

A hyperplane is defined by:A vector w
\square Perpendicular to the hyperplane

- Often called the "weight" vector
\square A scalar b
\square Selects the hyperplane that is distance b from the origin from among all possible hyperplanes

Classify a new instance (prediction)

$$
\begin{gathered}
D=\left\{\left(x_{i}, y_{i}\right) \mid i=1 \ldots N\right\} \\
y_{i} \in\{-1,1\}
\end{gathered}
$$

$w^{\boldsymbol{\top}} x+b=0 \quad x$ on the decision boundary $w^{\boldsymbol{\top}} x+b<0 \quad x$ "below" the decision boundary $w^{\top} x+b>0 \quad x$ "above" the decision boundary

$$
h(x)=\operatorname{sign}(w \cdot x+b)
$$

Learning (Training)

\square How to calculate the margin?

\square The margin γ_{i} is the length of the projection of the vector ($\mathrm{x}_{\mathrm{i}}-\mathrm{r}_{0}$) onto the weight vector
\square The length of the projection of one vector onto another is just the dot product!

$$
\begin{aligned}
\gamma_{i} & =\left(x_{i}-r_{0}\right) \cdot \frac{w}{\|w\|} \\
& =\frac{x_{i} \cdot w-r_{0} \cdot w}{\|w\|} \\
& =\frac{x_{i} \cdot w+b}{\|w\|}
\end{aligned}
$$

Learning (Training)

$$
\gamma_{i}=\frac{x_{i} \cdot w+b}{\|w\|} \quad \gamma=\min _{i} \gamma_{i}
$$

$\max _{\gamma, w, b} \gamma \quad$ s.t. $y_{j}\left(\frac{x_{j} \cdot w+b}{\|w\|}\right) \geq \gamma \forall j \quad$ Multiply by y_{i} to ensure positive

$$
\max _{w, b} \frac{1}{\|w\|} \quad \text { s.t. } y_{j}\left(\frac{x_{j} \cdot w+b}{\|w\|}\right) \geq \frac{1}{\|w\|} \forall j \quad \text { Scale } w \text { so that } \gamma=1 /\|w\|
$$

$$
\max _{w, b} \quad \frac{1}{\|w\|} \quad \text { s.t. } y_{j}\left(x_{j} \cdot w+b\right) \geq 1 \forall j \quad \text { Simplify constraints }
$$

$$
\min _{w, b}\|w\| \quad \text { s.t. } y_{j}\left(x_{j} \cdot w+b\right) \geq 1 \forall j \quad \text { Max } 1 / \mathrm{x} \text { same as } \min \mathrm{x}
$$

Solving the Optimization Problem

$$
\min _{w, b} \quad \frac{1}{2}\|w\|^{2} \quad \text { s.t. } y_{j}\left(x_{j} \cdot w+b\right) \geq 1 \forall j
$$

Need to optimize a quadratic function subject to linear constraints

The solution involves constructing a dual problem where a Lagrange multiplier (a scalar) is associated with every constraint in the primary problem

Solving the Optimization Problem

$\min _{w, b} \frac{1}{2}\|w\|^{2}$ such that $y^{(i)}\left(w^{\top} x^{(i)}+b\right) \geq 1 \quad \forall i$

subject to $\alpha_{i} \geq 0$ and $\sum_{i} \alpha_{i} y_{i}=0$

Solving the Optimization Problem

The solution has the form:

$$
w=\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} \text { and } b=y_{i}-w \cdot x_{i} \text { for any } x_{i} \text { s.t. } \alpha_{i} \neq 0
$$

Each non-zero alpha indicates corresponding $\mathbf{x}_{\mathbf{i}}$ is a support vector
The classifying function has the form: $\quad h(x)=\operatorname{sign}\left(\sum_{i} \alpha_{i} y_{i}\left(x_{i} \cdot x\right)+b\right)$

Relies on an dot product between the test point x and the support vectors X_{i}

Soft-margin Classification

\square slack variables ξ_{i} can be added to allow misclassification of difficult or noisy examples.

Still, try to minimize training set errors, and to place hyperplane "far" from each class (large margin)

How many support vectors?

Determined by alphas in optimization
Typically only a small proportion of the training data

The number of support vectors determines the run time for prediction

How fast are SVMs?

Training

- Time for training is dominated by the time for solving the underlying quadratic programming problem
- Slower than Naïve Bayes
- Non-linear SVMs are worse

Testing (Prediction)

- Fast - as long as we don't have too many support vectors

Non-linear SVMs

\square General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel" trick

The linear classifier relies on an inner product between vectors $x_{i}{ }^{\top} x_{i}$

$$
g\left(x_{i}\right)=\operatorname{sign}\left(\sum_{i} \alpha_{i} y^{(i)} x^{(i)} x+b\right)
$$

If every example is mapped into a high-dimensional space via some transformation $\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x})$ then the inner product becomes:

$$
g\left(x_{i}\right)=\operatorname{sign}\left(\sum_{i} \alpha_{i} y^{(i)} \varphi\left(x^{(i)}\right)^{\top} \varphi(x)+b\right)
$$

\square A kernel function is some function that corresponds to a dot product in some transformed feature space:

$$
K\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)=\varphi\left(\mathbf{x}_{\mathbf{i}}\right)^{\top} \varphi\left(\mathbf{x}_{\mathrm{j}}\right)
$$

The "Kernel" trick

The kernel K may be cheaper to compute then doing the actual transformation φ \square Implicitly do the transformation

$$
\phi(x)=\left[\begin{array}{l}
x_{1} x_{1} \\
x_{1} x_{2} \\
x_{1} x_{3} \\
x_{2} x_{1} \\
x_{2} x_{2} \\
x_{2} x_{3} \\
x_{3} x_{1} \\
x_{3} x_{2} \\
x_{3} x_{3}
\end{array}\right] \quad K(x, z)=\left(\sum_{i=1}^{n} x_{i} z_{i}\right)\left(\sum_{j=1}^{n} x_{i} z_{i}\right)
$$

Kernels

Why use kernels?
-Make non-separable problem separable.
-Map data into better representational space

Common kernels
-Linear

- Polynomial $K(x, z)=\left(1+x^{\top} z\right)^{\text {d }}$

■Radial basis function (infinite dimensional space)

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 \sigma^{2}}
$$

Summary

Support Vector Machines (SVMs)
\square Find the maximum margin hyperplane
\square Only the support vectors needed to determine hyperplane
\square Use slack variables to allow some error
\square Use a kernel function to make non-separable data separable
\square Often among the best performing classifiers

