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SUPPORT VECTOR 
MACHINES 

Today 

¨  Reading 
¤ AIMA 18.9 (SVMs) 

¨  Goals 
¤ Finish Backpropagation 
¤ Support vector machines 
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Backpropagation 

1.  Begin with randomly initialized weights 
2.  Apply the neural network to each training example 

(each pass through examples is called an epoch) 
3.  If it misclassifies an example modify the weights 

4.  Continue until the neural network classifies all 
training examples correctly 

(Derive gradient-descent update rule) 

Backpropagation 
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Support Vector Machines (SVMs) 

¨  SVMs are probably the most popular off-the-shelf 
classifier! 

¨  Software Packages 
¤ LIBSVM (LIBLINEAR) – on the Resources page 
¤ SVM-Light 
 

Which is the best decision boundary? 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

x1 

x2 

x1 x2 x1 or x2 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

x1 

x2 



11/19/14	  

4	  

Support vectors 

Maximize the margin 
Maximum-margin  

decision hyperplane 

Support Vector Machines 

What defines a hyperplane? 
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¨  A vector w  
¤  Perpendicular to the 

hyperplane 
¤ Often called the “weight” 

vector 

¨  A scalar b 
¤  Selects the hyperplane 

that is distance b from the 
origin from among all 
possible hyperplanes 

w 

b 

What defines a hyperplane? 

A hyperplane is defined by: 

Classify a new instance (prediction) 

w 

b 
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Learning (Training) 

¨  How to calculate the margin? 

xi 

γi 

w
wr0 

¨  The margin γi is the length of the 
projection of the vector (xi-r0) onto the 
weight vector 

¨  The length of the projection of one 
vector onto another is just the dot 
product! 
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Scale w so that γ=1/IIwII 

Multiply by yi to ensure positive 

Simplify constraints 

Max 1/x same as min x 
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Solving the Optimization Problem 

¨  Need to optimize a quadratic function subject to 
linear constraints 

 

¨  The solution involves constructing a dual problem 
where a Lagrange multiplier (a scalar) is associated 
with every constraint in the primary problem 
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Solving the Optimization Problem 
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Lagrange 
multipliers 

 Dual 

w|x+ b = 0 x on the decision boundary
w|x+ b < 0 x “below” the decision boundary
w|x+ b > 0 x “above” the decision boundary

min
w,b

1

2
||w||2 such that y(i)

�
w|x(i) + b

� � 1 8i

max
�,w,b

� such that y(i)
�
w|x(i) + b

�

||w|| � � 8i

�̂ = �||w||

max
�̂,w,b

�̂

||w|| such that y(i)
�
w|x(i) + b

� � �̂ 8i

max
w,b

1

||w|| such that y(i)
�
w|x(i) + b

� � 1 8i

max
↵

min
w,b

1

2
||w||2 �

NX

i=1

↵
i

⇥
y
i

(w · x
i

+ b
�� 1

⇤

max
↵

NX

i=1

↵
i

� 1

2

X

i

X

j

↵
i

↵
j

y
i

y
j

(x
i

· x
j

)

subject to ↵
i

� 0 and
X

i

↵
i

y
i

= 0

w =

NX

i=1

↵
i

y(i)x(i) and b = y(i) � w|x(i) for any x(i) s.t. ↵
i

6= 0

�(i) =
(x(i) � r0) · w

||w||

=
w · x(i) � r0 · w

||w||

=
w · x(i) + b

||w||
where b = �r0 · w

9

w|x+ b = 0 x on the decision boundary
w|x+ b < 0 x “below” the decision boundary
w|x+ b > 0 x “above” the decision boundary

min
w,b

1

2
||w||2 such that y(i)

�
w|x(i) + b

� � 1 8i

max
�,w,b

� such that y(i)
�
w|x(i) + b

�

||w|| � � 8i

�̂ = �||w||

max
�̂,w,b

�̂

||w|| such that y(i)
�
w|x(i) + b

� � �̂ 8i

max
w,b

1

||w|| such that y(i)
�
w|x(i) + b

� � 1 8i

max
↵

min
w,b

1

2
||w||2 �

NX

i=1

↵
i

⇥
y
i

(w · x
i

+ b
�� 1

⇤

max
↵

NX

i=1

↵
i

� 1

2

X

i

X

j

↵
i

↵
j

y
i

y
j

(x
i

· x
j

)

subject to ↵
i

� 0 and
X

i

↵
i

y
i

= 0

w =

NX

i=1

↵
i

y(i)x(i) and b = y(i) � w|x(i) for any x(i) s.t. ↵
i

6= 0

�(i) =
(x(i) � r0) · w

||w||

=
w · x(i) � r0 · w

||w||

=
w · x(i) + b

||w||
where b = �r0 · w

9



11/19/14	  

8	  
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¨  The solution has the form: 

¨  Each non-zero alpha indicates corresponding xi is a support vector 

¨  The classifying function has the form: 
 

¨  Relies on an dot product between the test point x and the support 
vectors xi 

Solving the Optimization Problem 
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¨  slack variables ξi can be added 
to allow misclassification of 
difficult or noisy examples. 

¨  Still, try to minimize training set 
errors, and to place hyperplane 
“far” from each class (large 
margin) 

ξj 

ξi 

Soft-margin Classification 
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How many support vectors? 

¨  Determined by alphas in optimization 
¨  Typically only a small proportion of the training 

data 
¨  The number of support vectors determines the run 

time for prediction 

Training 
§  Time for training is dominated by the time for solving the 

underlying quadratic programming problem 
§  Slower than Naïve Bayes 
§  Non-linear SVMs are worse 

Testing (Prediction) 
§  Fast - as long as we don’t have too many support vectors 

How fast are SVMs? 
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Φ:  x → φ(x) 

Non-linear SVMs 

¨  General idea:   the original feature space can always be 
mapped to some higher-dimensional feature space 
where the training set is separable: 

¨  The linear classifier relies on an inner product between vectors 
xi

Txj 

 

¨  If every example is mapped into a high-dimensional space via 
some transformation  Φ:  x → φ(x) then the inner product 
becomes: 

¨  A kernel function is some function that corresponds to a dot 
product in some transformed feature space: 

 

x 

The “Kernel” trick 

K(xi,xj)= φ(xi) 
Tφ(xj) 

 

p(Y |x1, x2, . . . , xn

)

/ p(Y, x1, x2, . . . , xn

)

= p(x1|x2, . . . , xn

, Y ) . . . p(x
n

|Y )p(Y )

= p(x1|Y )p(x2|Y ) . . . p(x
n

|Y )p(Y )

= p(Y )

nY

i=1

p(x
i

|Y )

Accuracy =
7 + 8

7 + 8 + 2 + 3
=

15

20
= .75

Precision =
7

7 + 3
= .70

Recall =
7

7 + 2
= .78

F1-score = 2

✓
.70 · .78
.70 + .78

◆
= 2

✓
.546

1.48

◆
= .74

D = {(x
i

,y
i

)|i = 1 . . . N}

y
i

2 {�1, 1}

g(x
i

) = sign

✓X

i

↵
i

y(i)x(i)x+ b

◆

w|x+ b = 0 x on the decision boundary
w|x+ b < 0 x “below” the decision boundary
w|x+ b > 0 x “above” the decision boundary

min
w,b

1

2
||w||2 such that y(i)

�
w|x(i) + b

� � 1 8i

max
↵

min
w,b

1

2
||w||2 �

NX

i=1

↵
i

⇥
y(i)(w|x(i) + b

�� 1
⇤

max
↵

NX

i=1

↵
i

� 1

2

X

i

X

j

↵
i

↵
j

y(i)y(j)x(i)x(j)

subject to ↵
i

� 0 and
X

i

↵
i

y(i) = 0

w =

NX

i=1

↵
i

y(i)x(i) and b = y(i) � w|x(i) for any x(i) s.t. ↵
i

6= 0

8

p(Y |x1, x2, . . . , xn

)

/ p(Y, x1, x2, . . . , xn

)

= p(x1|x2, . . . , xn

, Y ) . . . p(x
n

|Y )p(Y )

= p(x1|Y )p(x2|Y ) . . . p(x
n

|Y )p(Y )

= p(Y )

nY

i=1

p(x
i

|Y )

Accuracy =
7 + 8

7 + 8 + 2 + 3
=

15

20
= .75

Precision =
7

7 + 3
= .70

Recall =
7

7 + 2
= .78

F1-score = 2

✓
.70 · .78
.70 + .78

◆
= 2

✓
.546

1.48

◆
= .74

D = {(x
i

,y
i

)|i = 1 . . . N}

y
i

2 {�1, 1}

g(x
i

) = sign

✓X

i

↵
i

y(i)'(x(i))|'(x) + b

◆

w|x+ b = 0 x on the decision boundary
w|x+ b < 0 x “below” the decision boundary
w|x+ b > 0 x “above” the decision boundary

min
w,b

1

2
||w||2 such that y(i)

�
w|x(i) + b

� � 1 8i

max
↵

min
w,b

1

2
||w||2 �

NX

i=1

↵
i

⇥
y(i)(w|x(i) + b

�� 1
⇤

max
↵

NX

i=1

↵
i

� 1

2

X

i

X

j

↵
i

↵
j

y(i)y(j)x(i)x(j)

subject to ↵
i

� 0 and
X

i

↵
i

y(i) = 0

w =

NX

i=1

↵
i

y(i)x(i) and b = y(i) � w|x(i) for any x(i) s.t. ↵
i

6= 0

8



11/19/14	  

11	  

*	  

The “Kernel” trick 

¨  The kernel K may be cheaper to compute then 
doing the actual transformation φ 
¤  Implicitly do the transformation 

Sec. 15.2.3 

15

We can also write this as
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xizi

)(

n
∑

j=1

xizi

)

=
n
∑

i=1

n
∑

j=1

xixjzizj

=
n
∑

i,j=1

(xixj)(zizj)

Thus, we see that K(x, z) = φ(x)Tφ(z), where the feature mapping φ is given
(shown here for the case of n = 3) by

φ(x) =





























x1x1

x1x2

x1x3

x2x1

x2x2

x2x3

x3x1

x3x2

x3x3





























.

Note that whereas calculating the high-dimensional φ(x) requires O(n2) time,
finding K(x, z) takes only O(n) time—linear in the dimension of the input
attributes.

For a related kernel, also consider

K(x, z) = (xT z + c)2

=
n
∑

i,j=1

(xixj)(zizj) +
n
∑

i=1

(
√
2cxi)(

√
2czi) + c2.

(Check this yourself.) This corresponds to the feature mapping (again shown
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Kernels 

Why use kernels? 
n Make non-separable problem separable. 
n Map data into better representational space 

 
Common kernels 

n Linear 
n Polynomial K(x,z) = (1+xTz)d 

n Radial basis function (infinite dimensional space) 
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*	  

Summary 

¨  Support Vector Machines (SVMs) 
¤ Find the maximum margin hyperplane 
¤ Only the support vectors needed to determine 

hyperplane 
¤ Use slack variables to allow some error 
¤ Use a kernel function to make non-separable data 

separable 
¤ Often among the best performing classifiers 


