SUPERVISED LEARNING

Progress Report

- □ We've finished Part I: Problem Solving
- □ We've finished Part II: Reasoning with uncertainty
- □ Part III: (Machine) Learning
 - Supervised Learning
 - Unsupervised Learning
- □ Overlaps quite a bit with Part II

Today

- Reading
 - We're skipping to AIMA Chapter 18!
 - □ AIMA 18.1-18.2, skim 20.2.2
- □ Goals
 - □ Intro. to Machine Learning
 - Supervised learning terminology
 - □ Naïve Bayes
 - □ (Decision Trees)

Machine Learning

- □ The term "machine learning" is a bit misleading
 - □ Pattern recognition
- □ We can use machine learning to
 - learn the probabilities for a BN
 - learn the topology of a BN
 - learn heuristic function for games

Subfields of Machine Learning

- □ Supervised learning
 - learning with labels
 - classification, regression, structured prediction
- Unsupervised learning
 - learning without labels
 - clustering, projection methods
- □ Reinforcement learning
 - □ learning with rewards
 - planning

Supervised Learning Terminology

- □ data set
- □ instance, input
- features
- □ label, output
- hypothesis
- hypothesis class
- □ realizable, consistent

Types of Supervised Learning Tasks

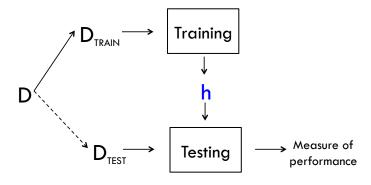
- □ Regression
 - y is a (vector of) real-valued number(s)
 - e.g. price of a commodity, pollution levels, brain activity
- □ Classification
 - y is a discrete (categorical) value
 - e.g. spam or not spam, 5-star ratings
- □ Structured prediction
 - y is a structured object
 - e.g. given sentence predict parse tree, given words in a sentence predict POS tags

Types of Supervised Learning Tasks

- Supervised learning
 - Spam
 - Digit recognition
 - Rainfall levels in India
 - Pollution index
 - Stock returns
 - User's ratings of movies
 - Genre classification
 - Sentiment analysis
 - Document classification
 - Image recognition
 - Part-of-speech
 - Storm trajectories

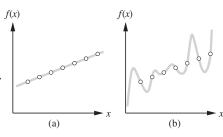
So what is learning?

 Learning is the process of finding (constructing, searching for) a hypothesis that performs well on the training data and generalizes well to unseen data (the test data)



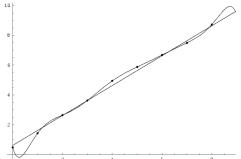
Ockham's Razor (inductive bias)

- Ockham's Razor
 - □ Prefer the simplest consistent hypothesis
- □ Example: Curve fitting
 - x is the x-coordinate
 - y is the y-coordinate
 - Both hypotheses are consistent
 - Which is better?



Overfitting (phenomenon)

- Overfitting
 - Learner fits itself to noise in the training data failing to generalize well
 - □ Causes: noisy data (too little data), overly complex models
- □ Example: Curve fitting
 - Which is better?



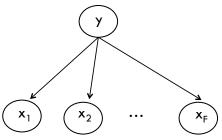
Common Supervised Learning Algorithms

- Graphical models
 - Naïve Bayes classifiers
 - Bayesian networks
- Decision trees
 - Random forests (many decision trees)
- Neural Networks
 - Perceptrons
 - Artificial neural networks
 - Deep belief nets
- Max margin classifiers
 - Support vector machines
- Regression analysis
 - Logistic regression
 - Linear regression

Each of these algorithms makes assumptions — these assumptions are known as the inductive bias of the classifier

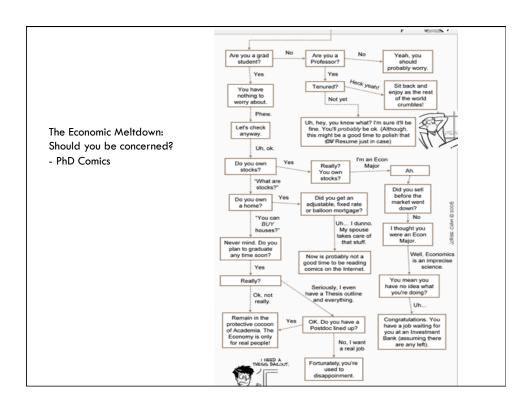
Naïve Bayes Classifier

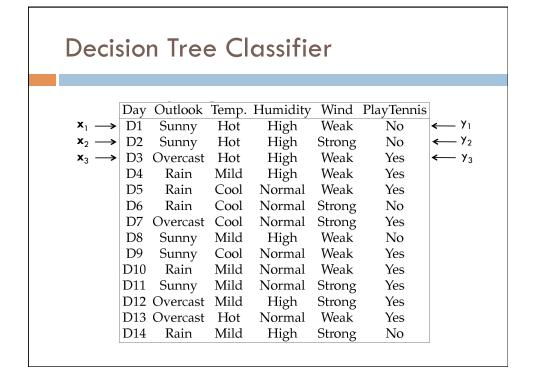
- Used for classification
 - x_i are symptoms and $y = \{Flu, Appendicitis,...\}$
 - \mathbf{x}_i are word frequencies and $\mathbf{y} = \{\text{Politics, Sports, Finance,...}\}$
- Inductive bias: features are conditionally independent given label



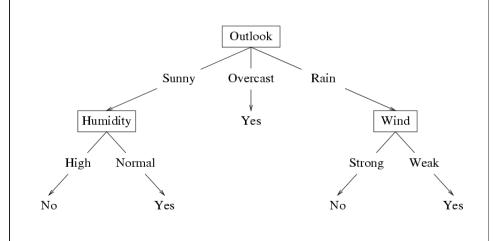
Naïve Bayes Classifier

- \Box Training: learn p(y) and p(x_f|y) from data set D
 - □ Think of D as a set of samples we observed
 - Use these samples to estimate distributions
- □ Testing: Once we estimate these probabilities from D, want to compute p(y=k|x) for a new instance x
 - Assign x to whichever class has highest probability





Decision Tree Classifier

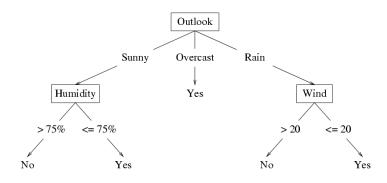


Decision Tree Classifier

- □ Decision trees are best suited to problems where
 - □ Each attribute is discrete
 - □ The label y is discrete
 - The hypothesis can be expressed using disjunctions (OR) of conjunctions (AND)
 - The training data may contain errors
 - □ The training data may contain missing attribute values

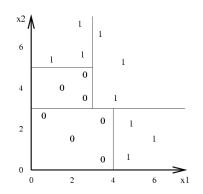
Decision Tree Classifier

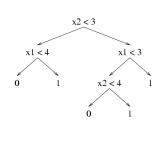
□ If the features are continuous, internal nodes may test the value of a feature against a threshold



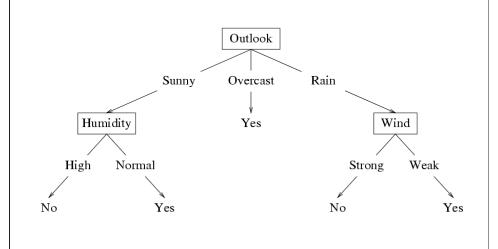
Decision Tree Classifier

□ Learns axis-parallel decision boundaries, i.e. divides feature space into hyper-rectangles





Learning a Decision Tree



Learning a Decision Tree

```
function DECISION-TREE-LEARNING (examples, attributes, parents) returns a tree
if examples is empty return MAJORITY_VOTE(parents)
else if all examples have same classification return classification
else if attributes is empty return MAJORITY_VOTE(examples)
else

A 

CHOOSE-BEST-ATTRIBUTE (examples)

tree 

a new decision tree with root A

for each value v<sub>k</sub> of A

S<sub>k</sub> 

examples with value v<sub>k</sub> for attribute A
subtree 

DECISION-TREE-LEARNING(S<sub>k</sub>, attributes-A, examples)
add branch to tree with label (A=v<sub>k</sub>) and subtree
return tree
```