# SL: PUTTING IT ALL TOGETHER

#### **Test information**

- $\Box$  The second test is next week Monday (12/1)
- □ In-class, closed book, closed notes
- $\hfill \square$  Similar to previous test
- $\hfill\Box$  Not comprehensive starts at HMM
- □ List of topics posted on Piazza

#### **Test information**

- Covered
  - □ HMM, filtering, smoothing, particle filtering
  - Supervised learning, naïve Bayes
  - Decision trees, neural networks, support vector machines
  - Clustering
- Not Covered
  - □ Prediction, Most likely explanation, Viterbi Algorithm
  - Won't ask you to derive Backpropagation/SVMs
  - □ No calculator needed

# Today

- □ Reading
  - Alma 18.4 (Cross-validation)
  - AIMA 18.10-18.11 (Ensembles)
- □ Goals
  - □ Step 1: Formulating the problem
  - □ Step 2: Exploring the data
  - □ Step 3: Feature Selection
  - Step 4: Training
  - Step 5: Testing

The first 4 steps are not necessarily done in a strict linear progression

#### Overview

$$D = \{(\mathbf{x}_i, y_i) \mid i = 1, \dots, N\}$$
 where  $f(\mathbf{x}_i) = y_i$  
$$D_{\text{TRAIN}} \longrightarrow \boxed{\text{Training}}$$



# Step 1: Formulate the problem

- □ What quantity are you predicting?
  - □ real-valued, categorical, structure?
  - Changing over time?
  - Classification
    - Binary classification? Multi-class classification?
    - Singly-labeled? Multi-labeled?
    - For multi-labeled classification tasks, how correlated are the labels?
- □ What data do you have?
  - □ Where to get labeled data? (Amazon mechanical turk)
  - How much labeled data?
  - What is the quality of the labeled data?
  - Are the labels learnable given the data?
  - Is the distribution of labels in the data skewed/imbalanced?

# **Guiding Principles**

- Unsupervised learning as a surrogate for supervised learning...is a headache. Just get more data
- Reproducibility
- □ Think of how you would justify each decision you made
- □ Start simple and iterate

# Reducing multi-class to binary task



#### Multi-label Classification

- Each example can be labeled with multiple labels
  - Don't confuse this with multi-class classification!
  - Common for document classification or object recognition



- One-vs-all
- One classifier for every possible combination of labels
  - Combinatorial explosion
  - Limited training data

## Step 2: Exploratory Data Analysis

- □ Look at the data. It's surprising how often we forget to actually do this!
- Exploratory Data Analysis (EDA) is a statistical mindset
  - Box plots, histograms, scatter plots, mean, mode, deviations
  - Can guide the modeling process by
    - give you insight into the data
    - help (in)validate your assumptions
    - detect outliers

# Step 3: Feature Selection

- What features should I use?
  - Dimensionality reduction if exist time/space constraints
  - □ Reduce noise in the data (irrelevant or redundant features)
- Dimensionality reduction
  - Principal component analysis (PCA)
  - Singular value decomposition (SVD)
  - Canonical correlation analysis (CCA)
- Regularization
  - Use every feature but penalize classifiers that are overly complex

Error(w) = 
$$\sum_{i=1}^{N} (y_i - h_w(x_i)) + (\lambda ||w||^2)$$

encourages sparse weight vectors

#### Other tricks

- □ Scale input features
- □ Transform features
  - e.g., take log
- □ Higher-order features
  - e.g., product of features
- Again, EDA can help guide this process

## Step 4: Training

- □ Pick your classifier
  - Decision tree, perceptron, neural network, SVM, linear regression, logistic regression, random forests, ensembles, Gaussian process regression, hidden Markov models, conditional random field, Bayesian networks,...
  - Bagging or Boosting
- □ Your choice is informed by all of the previous steps
- □ Often there are parameters that must be tuned...

#### **Ensembles of Classifiers**

- □ An ensemble of classifiers A group of classifiers whose predictions are combined to produce one final prediction
- Benefits
  - □ Harder to make a wrong prediction
  - More expressive hypothesis

## **Boosting**

- Learn a series of weak classifiers
- Weight each weak classifier to create a final strong classifier
- Often the weight for each classifier is proportional to its accuracy
- □ AdaBoost (Freund and Schapire 1995)

#### Bagging

- □ Short for "Bootstrap aggregating"
- □ Given training set D
  - $\Box$  Generate M new training sets  $D_i$  where  $|D_i| < |D|$  by sampling from D with replacement
  - This is a statistical technique known as bootstrapping
  - □ Train a classifier on each of the M new training sets
  - Combine output of M classifiers using averaging or voting
- □ Random Forests (Breimen, 2001)
  - Bagged decision trees



# Step 5: Testing

- □ We have a final hypothesis
- □ We now use our hypothesis to predict on new (unseen) examples from the test set.
  - There's no going back and tweaking the classifier based on its test set performance!
- □ Where do these new unseen examples come from?
  - External source
  - Set aside from training data

#### Binary Classification: Measures of Performance

- □ Let  $D_{TEST} = \{ (x_i, y_i) \mid i=1...N \}$  be our test set and  $\{ h_i \}$  be the set of predicted values
- □ The contingency table is given by:

|       | y = 1 | y = 0 |
|-------|-------|-------|
| h = 1 | TP    | FP    |
| h = 0 | FN    | TN    |

- TP is the number of true positives
- FP is the number of false positives
- FN is the number of false negatives
- TN is the number of true negatives

#### Binary Classification: Measures of Performance

$$\label{eq:accuracy} \text{Accuracy} = \frac{TP + TN}{TP + FP + TN + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$y = 1$$
  $y = 0$   
 $h = 1$  TP FP  
 $h = 0$  FN TN

Contingency Table

$$F_{1}\text{-score} = 2 \cdot \frac{Prec \cdot Recall}{Prec + Recall}$$

#### Binary Classification: Measures of Performance

Accuracy = 
$$\frac{7+8}{7+8+2+3} = \frac{15}{20} = .75$$

$$Precision = \frac{7}{7+3} = .70$$

$$Recall = \frac{7}{7+2} = .78$$

$$F_1$$
-score =  $2\left(\frac{.70 \cdot .78}{.70 + .78}\right) = 2\left(\frac{.546}{1.48}\right) = .74$ 

|       | y = 1 | y = 0 |
|-------|-------|-------|
| h = 1 | 7     | 3     |
| h = 0 | 2     | 8     |

Contingency Table



#### Multi-class Classification: Measures of performance

- Evaluate each label separately using a "one-vs-all" approach
  - Macro-averaging
    - Compute the measure (precision, recall, F<sub>1</sub>) for each class
    - Average across all C classes
    - Gives equal weight to all classes
  - Micro-averaging
    - Pool the TP, FP, FN, TN for all C
    - Compute the measure (precision, recall, F1)
    - Weighted towards performance of most likely class

|           | $y_c = 1$       | $y_c = 0$       |
|-----------|-----------------|-----------------|
| $h_c = 1$ | $TP_c$          | FP <sub>c</sub> |
| $h_c = 0$ | FN <sub>c</sub> | TN <sub>c</sub> |

Contingency Table

# Regression: Measures of performance

- Mean-squared error
- □ Root mean-squared error
- Mean absolute error
- □ Mean absolute percentage
- □ ...



# Summary

- Overview
  - Step 1: Formulate the problem
  - □ Step 2: Explore the data
  - □ Step 3: Feature Selection
  - □ Step 4: Training
  - □ Step 5: Testing