SL: PUTTING IT ALL TOGETHER

Test information

\square The second test is next week Monday (12/1)
\square In-class, closed book, closed notes
\square Similar to previous test
\square Not comprehensive - starts at HMM
\square List of topics posted on Piazza

Test information

Covered

\square HMM, filtering, smoothing, particle filtering
\square Supervised learning, naïve Bayes
\square Decision trees, neural networks, support vector machines
\square Clustering
Not Covered
\square Prediction, Most likely explanation, Viterbi Algorithm
\square Won't ask you to derive Backpropagation/SVMs
\square No calculator needed

Today

Reading

\square AIMA 18.4 (Cross-validation)
\square AIMA 18.10-18.11 (Ensembles)

Goals
\square Step 1: Formulating the problem
The first 4 steps are not
\square Step 2: Exploring the data necessarily done in a strict linear progression
\square Step 3: Feature Selection
\square Step 4: Training
\square Step 5: Testing

Overview

$$
D=\left\{\left(\mathbf{x}_{i}, y_{i}\right) \mid i=1, \ldots, N\right\} \quad \text { where } \quad f\left(\mathbf{x}_{i}\right)=y_{i}
$$

Step 1: Formulate the problem

What quantity are you predicting?
\square real-valued, categorical, structure?
\square Changing over time?
\square Classification

- Binary classification? Multi-class classification?
- Singly-labeled? Multi-labeled?
- For multi-labeled classification tasks, how correlated are the labels?

What data do you have?

- Where to get labeled data? (Amazon mechanical turk)

How much labeled data?
\square What is the quality of the labeled data?
Are the labels learnable given the data?
\square Is the distribution of labels in the data skewed/imbalanced?

Guiding Principles

Unsupervised learning as a surrogate for supervised learning...is a headache. Just get more data

Reproducibility
Think of how you would justify each decision you made

Start simple and iterate

Reducing multi-class to binary task

Multi-label Classification

Each example can be labeled with multiple labels
\square Don't confuse this with multi-class classification!
\square Common for document classification or object recognition

One-vs-all
\square One classifier for every possible combination of labels
\square Combinatorial explosion
\square Limited training data

Step 2: Exploratory Data Analysis

Look at the data. It's surprising how often we forget to actually do this!
Exploratory Data Analysis (EDA) is a statistical mindset
\square Box plots, histograms, scatter plots, mean, mode, deviations
\square Can guide the modeling process by

- give you insight into the data
- help (in)validate your assumptions
- detect outliers

Step 3: Feature Selection

\square What features should I use?
\square Dimensionality reduction if exist time/space constraints

- Reduce noise in the data (irrelevant or redundant features)
\square Dimensionality reduction
- Principal component analysis (PCA)
- Singular value decomposition (SVD)
\square Canonical correlation analysis (CCA)
\square Regularization
\square Use every feature but penalize classifiers that are overly complex

$$
\operatorname{Error}(w)=\sum_{i=1}^{N}\left(y_{i}-h_{w}\left(x_{i}\right)\right)+\lambda\|w\|^{2} \quad \begin{gathered}
\text { encourages sparse } \\
\text { weight vectors }
\end{gathered}
$$

Other tricks

\square Scale input featuresTransform features

- e.g., take logHigher-order features
- e.g., product of features

Again, EDA can help guide this process

Step 4: Training

Pick your classifier

- Decision tree, perceptron, neural network, SVM, linear regression, logistic regression, random forests, ensembles, Gaussian process regression, hidden Markov models, conditional random field, Bayesian networks,...
\square Bagging or Boosting
Your choice is informed by all of the previous steps
Often there are parameters that must be tuned...

Ensembles of Classifiers

An ensemble of classifiers - A group of classifiers whose predictions are combined to produce one final prediction
\square Benefits

- Harder to make a wrong prediction
\square More expressive hypothesis

Boosting

Learn a series of weak classifiers
Weight each weak classifier to create a final strong classifier

Often the weight for each classifier is proportional to its accuracy
AdaBoost (Freund and Schapire 1995)

Bagging

Short for "Bootstrap aggregating"Given training set D
\square Generate M new training sets D_{i} where $\left|D_{i}\right|<|D|$ by sampling from D with replacement
\square This is a statistical technique known as bootstrapping
\square Train a classifier on each of the M new training sets
\square Combine output of M classifiers using averaging or voting

Random Forests (Breimen, 2001)
\square Bagged decision trees

Cross Validation

\square K-fold cross validation

- Choose a classifier
- Tune a parameter

Repeat K times:

- Provide confidence intervals

Training Data
Split into K equal sets (folds, partitions)

Train on $K-1$ sets
Test on 1 set

1
2
\vdots
$\mathrm{k}-1$

\longrightarrow

\longrightarrow

Step 5: Testing

We have a final hypothesis

We now use our hypothesis to predict on new (unseen) examples from the test set.
\square There's no going back and tweaking the classifier based on its test set performance!

Where do these new unseen examples come from?
\square External source
\square Set aside from training data

Binary Classification: Measures of Performance

Let $D_{\text {TEST }}=\left\{\left(x_{i}, y_{i}\right) \mid i=1 \ldots N\right\}$ be our test set and $\left\{h_{i}\right\}$ be the set of predicted values

The contingency table is given by:

	$y=1$	$y=0$
$h=1$	$T P$	FP
$h=0$	FN	TN

\square TP is the number of true positives
$\square \mathrm{FP}$ is the number of false positives
$\square \mathrm{FN}$ is the number of false negatives
$\square \mathrm{TN}$ is the number of true negatives

Binary Classification: Measures of Performance

$$
\begin{aligned}
& \text { Accuracy }=\frac{T P+T N}{T P+F P+T N+F N} \\
& \text { Precision }=\frac{T P}{T P+F P} \\
& \text { Recall }=\frac{T P}{T P+F N} \\
& \text { Contingency Table } \\
& \mathrm{F}_{1} \text {-score }=2 \cdot \frac{\text { Prec } \cdot \text { Recall }}{\text { Prec }+ \text { Recall }}
\end{aligned}
$$

Binary Classification: Measures of Performance

$$
\text { Accuracy }=\frac{7+8}{7+8+2+3}=\frac{15}{20}=.75
$$

	$y=1$	$y=0$
$h=1$	7	3
$h=0$	2	8

$$
\text { Precision }=\frac{7}{7+3}=.70
$$

Contingency Table

$$
\text { Recall }=\frac{7}{7+2}=.78
$$

F_{1}-score $=2\left(\frac{.70 \cdot .78}{.70+.78}\right)=2\left(\frac{.546}{1.48}\right)=.74$

Multi-class Classification: Measures of performance

Evaluate each label separately

 using a "one-vs-all" approach\square Macro-averaging

- Compute the measure (precision, recall, F_{1}) for each class
- Average across all C classes
- Gives equal weight to all classes
- Micro-averaging
- Pool the TP, FP, FN, TN for all C classes
- Compute the measure (precision, recall, F1)
- Weighted towards performance of most likely class

Regression: Measures of performance

Mean-squared errorRoot mean-squared error
\square Mean absolute error
\square Mean absolute percentage...

Summary

\square Overview
\square Step 1: Formulate the problem
\square Step 2: Explore the data
\square Step 3: Feature Selection
\square Step 4: Training
\square Step 5: Testing

