## PROBABILITY

## Progress Report

$\square$ We've finished Part I: Problem Solving!
$\square$ Part II: Reasoning with uncertainty
$\square$ Probability
$\square$ Bayesian networks
$\square$ Reasoning over time (hidden Markov models)Part III: Machine Learning

## Today

## Reading

- AIMA Chapter 13.2-13.5


## Goals

$\square$ Random variables
$\square$ Joint, marginal, conditional distributions

- Product rule, chain rule, Bayes' rule
$\square$ Inference
$\square$ Independence
We're going to be using these concepts a lot so it's worth learning it well the first time!


## Handling Uncertainty

The world is an uncertain place
$\square$ Partially observable, non-deterministic
$\square$ On the way to the bank, you get in a car crash!
$\square$ Medical diagnosis
$\square$ Driving to LAX (if you have to)
$\square$ Sensors

Probability theory gives us a language to reason about an uncertain world.

Probability theory is beautiful!

## Random variables

A random variable (rv) is a variable (that captures some quantity of interest) whose value is random
$\square X=$ the next word uttered by my professor (this is of great interest and importance)
$\square Y=$ the number of people that enter this building on a given day
$\square \mathrm{D}=$ the time it will take to drive to LAX
$\square \mathrm{W}=$ today's weather
$\square$ Like variables in a CSP, random variables have domains
$\square X$ in $\{$ the, $a$, of, is, in, if, when, up, on,..., sky, shenanigans,...\}

- $Y$ in $[0,1,2,3,4,5,6, \ldots, \infty)$
$\square \mathrm{D}$ in $[0, \infty)$
$\square$ W in \{sun, rain, cloudy, snowy\}
$\square$ A discrete rv has a countable domain
$\square$ A continuous rv has an uncountable domain


## Discrete Probability distribution

Each value (outcome) in the domain is associated with a realvalued number called a probability that reflects the chances of the random variable taking on that value

| $\mathbf{w}$ | $\mathbf{P}(\mathbf{W}=\mathbf{w})$ |
| :---: | :---: |
| sunny | 0.6 |
| rain | 0.1 |
| cloudy | 0.29 |
| snow | 0.01 |

probability
distributions
$\left\{\begin{array}{|c|c|}\hline \mathbf{x} & \mathbf{P}(\mathbf{X}=\mathbf{x}) \\ \hline \text { the } & .005 \\ \hline a & .002 \\ \hline \text { of } & .0001 \\ \hline \ldots & \ldots \\ \hline \text { peregrinate } & 10^{-9} \\ \hline\end{array}\right.$

Constraints for a valid probability distribution:

$$
0 \leq p(\omega) \leq 1 \text { such that } \sum_{\omega} p(\omega)=1
$$

## Discrete Probability distribution

Constraints for a valid probability distribution:
$0 \leq p(\omega) \leq 1$ such that $\sum_{\omega} p(\omega)=1$

The total probability mass, which is 1 , is divided among the possible outcomes


## Joint probability distribution

$\square$ A joint distribution over a set of r.v.s $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ assigns probabilities to each possible assignment:

$$
\begin{gathered}
p\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gathered}
$$

$\square$ Still subject to constraints:

| $\mathbf{P}(W=w, T=t)$ |  |  |
| :---: | :---: | :---: |
| $\mathbf{t}$ | $\boldsymbol{t}$ | $\mathbf{P}$ |
| sunny | hot | 0.4 |
| rain | hot | 0.1 |
| sunny | cold | 0.2 |
| rain | cold | 0.3 |

$0 \leq p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq 1 \quad$ and $\quad \sum_{\left(x_{1}, \ldots, x_{n}\right)} p\left(x_{1}, \ldots, x_{n}\right)=1$

If we have $n$ variables with domain size $d$, what is the size of the probability distribution (the number of rows in the table)?

## Events

$\square$ An event is a set $E$ of outcomes
$\square$ sunny AND hot $=\{($ sunny, hot $)\}$

- sunny $=\{($ sunny, hot), (sunny, cold) $\}$
$\square$ sunny OR hot $=\{($ sunny, hot), (rainy, hot), (sunny, cold) $\}$


## Events

$\square$ An event is a set E of outcomes

- sunny AND hot $=\{($ sunny, hot $)\}$
$\square$ sunny $=\{$ (sunny, hot), (sunny, cold) $\}$
- sunny OR hot $=\{($ sunny, hot), (rainy, hot), (sunny, cold) $\}$

The joint distribution can be used to calculate the probability of an event

$$
p(E)=\sum_{\left(x_{1}, \ldots, x_{n}\right) \in E} p\left(x_{1}, \ldots, x_{n}\right)
$$

The probability of an event is the sum of the probability of the outcomes in the set

| $\mathbf{w}$ | $\mathbf{t}$ | $\mathbf{P}$ |
| :---: | :---: | :---: |
| sunny | hot | 0.4 |
| rain | hot | 0.1 |
| sunny | cold | 0.2 |
| rain | cold | 0.3 |

## Marginal Distributions

Sometimes we have the joint distribution but we're only interested in the distribution of a subset of the variables

- Called the marginal distribution
- We "marginalize out" the other variables by summing over them
- Corresponds to a sub-table created by summing over rows

| $\mathrm{P}(\mathrm{W}=\mathrm{w}, \mathrm{T}=\mathrm{t})$ |  |  |
| :---: | :---: | :---: |
| $\mathbf{w}$ | $\boldsymbol{t}$ | $\mathbf{P}$ |
| sunny | hot | 0.4 |
| rain | hot | 0.1 |
| sunny | cold | 0.2 |
| rain | cold | 0.3 |

$$
\xrightarrow{p(X=x)=\sum_{y} P(X=x, Y=y)}
$$



Oftentimes, the events we're interested in are marginal distributions
$P(T=t)$

| $\mathbf{t}$ | $\mathbf{P}$ |
| :---: | :---: |
| hot |  |
| cold |  |

## Conditional (posterior) distribution

$\square$ Often, we observe some information (evidence) and we want to know the probability of an event conditioned on this evidence

$$
\mathrm{p}(\mathrm{~W} \mid \mathrm{T}=\text { cold }) \quad \begin{gathered}
\text { In all the worlds where } \\
\mathrm{T}=\text { cold, what is the } \\
\text { probability that } \mathrm{W}=\text { sunny? } \\
\text { That } \mathrm{W}=\text { rainy? }
\end{gathered}
$$

This is called the conditional distribution, e.g. the distribution of W conditioned on the evidence $\mathrm{T}=$ cold

## Conditional (posterior) distribution

The conditional distribution is given by the equation

$$
p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}
$$



## Conditional (posterior) distribution

$\square$ The conditional distribution is given by the equation

$$
p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}
$$



## Conditional (posterior) distribution

The conditional distribution is given by the equation

$$
p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}
$$



## Conditional (posterior) distribution

$\square$ The conditional distribution is given by the equation

$$
p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}
$$



## Conditional (posterior) distribution

The conditional distribution is given by the equation

$$
p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}
$$



## Conditional and Joint are just a constant apart!

$$
\begin{aligned}
& p(W=s \mid T=c)=\frac{p(W=s, T=c)}{p(T=c)}=\frac{0.2}{0.5}=0.4 \\
& p(W=r \mid T=c)=\frac{p(W=r, T=c)}{p(T=c)}=\frac{0.3}{0.5}=0.6
\end{aligned}
$$

$\square$ Note that $\mathrm{p}(\mathrm{T}=\mathrm{c})$ is constant no matter the value of W
$\square$ We call $\mathrm{p}(\mathrm{T}=\mathrm{c})$ a normalization constant because:

1. It is constant with respect to the distribution of interest $\mathrm{p}(\mathrm{W} \mid \mathrm{T}=\mathrm{c})$
2. It ensures that the distribution sums to 1 (i.e. it restores the distribution $\mathrm{p}(\mathrm{W} \mid \mathrm{T}=\mathrm{c})$ back to the "normal" condition of summing to 1 )

## Conditional and Joint are just a constant apart!

$$
\begin{gathered}
p(W=s \mid T=c)=\frac{p(W=s, T=c)}{p(T=c)}=\frac{0.2}{0.5}=0.4 \\
p(W=r \mid T=c)=\frac{p(W=r, T=c)}{p(T=c)}=\frac{0.3}{0.5}=0.6 \\
p(X, Y) \propto p(X \mid Y) \\
\uparrow
\end{gathered}
$$

"is proportional to"

## Conditional and Joint are just a constant apart!

$$
\begin{gathered}
p(W=s \mid T=c)=\frac{p(W=s, T=c)}{p(T=c)}=\frac{0.2}{0.5}=0.4 \\
p(W=r \mid T=c)=\frac{p(W=r, T=c)}{p(T=c)}=\frac{0.3}{0.5}=0.6 \\
p(X, Y) \propto p(X \mid Y)
\end{gathered}
$$

Normalization
Trick

$$
<\frac{0.2}{0.2+0.3}, \frac{0.3}{0.2+0.3}>=<0.4,0.6>
$$

## Normalization Trick

$\square$ Step 1: Compute $\mathrm{Z}=$ sum of $\mathrm{p}(\mathrm{W}, \mathrm{T}=\mathrm{c})$ for all values of W
$\square$ Step 2: Divide each joint probability by $Z$
$\square$ (All we're doing is computing the prob. of evidence, i.e. $\mathrm{p}(\mathrm{T}=\mathrm{c})$, from the joint distribution by marginalizing over W )

$$
<\frac{0.2}{0.2+0.3}, \frac{0.3}{0.2+0.3}>=<0.4,0.6>
$$

## Normalization Trick

$\square$ Normalize the following distributions:

| $P(W=w, T=t)$ |  |  |
| :---: | :---: | :---: |
| $w$ | $t$ | $\mathbf{P}$ |
| sunny | hot | 0.4 |
| rain | hot | 0.1 |
| sunny | cold | 0.2 |
| rain | cold | 0.3 |

$$
\begin{aligned}
& \mathrm{p}(\mathrm{~W} \mid \mathrm{T}=\text { hot }) ? \\
& \mathrm{p}(\mathrm{~W} \mid \mathrm{T}=\text { cold }) ? \\
& \mathrm{p}(\mathrm{~T} \mid \mathrm{W}=\text { sunny }) \text { ? } \\
& \mathrm{p}(\mathrm{~T} \mid \mathrm{W}=\text { rainy }) ?
\end{aligned}
$$

## Summary of distributions so far

$$
\begin{aligned}
& \qquad p(x)=\sum_{y} p(x, y) \\
& \text { Conditional } \\
& p(x \mid y)=\frac{p(x, y)}{p(y)}
\end{aligned}
$$

