INFERENCE IN BAYESIAN NETWORKS

Today

\square Reading

- AIMA 14.4-14.5
\square Goals
\square Recap d-separation
\square Exact inference in BN
\square Approximate inference in BN

Bayesian Networks

\square A Bayesian Network is a directed acyclic graph that represents the conditional independencies of a set of random variables
\square Each random variable corresponds to a node
\square A directed edge represents a direct influence
\square The conditional distribution of each node given its parents must be explicitly specified

Representing the joint using a BN

Given a BN over a set of random variables, the joint distribution can be factor as

$$
p\left(x_{1}, \ldots, x_{N}\right)=\prod_{i=1}^{N} p\left(x_{i} \mid \operatorname{parents}\left(x_{i}\right)\right)
$$

Connection patterns and independence

Linear connection: The two end variables are dependent on each other. Observing the middle variable makes them independent.

Converging connection: The two end variables are independent of each other. Observing the middle variable makes them dependent.
\square Divergent connection: The two end variables are dependent on each other. Observing the middle variable makes them independent.

D-Separation

Algorithm to determine independencies in BN
\square Query: Are two variables X_{i} and X_{j} independent?
Check all paths between X_{i} and X_{j}

- If all paths are blocked, then independent
- If any path is not blocked then not independent

A path is blocked if for any connection on the path the two end variables are independent

List the independencies in the following Bayesian Network

E is independent of G ?
C is independent of D ?
C is independent of D given G ?
F is independent of A given $\{C, D\}$?

Bayesian Networks terminology

Independence assumptions encoded in the Bayesian Network

Local Markov Assumption:
A node X is independent of its non-descendants given its parents

Non-descendent

Independence assumptions encoded in the Bayesian Network

Markov Blanket:

A node X is conditionally independent of all other nodes given its parents, children, and children's parents

Non-descendent

Inference in Bayesian Networks

\square Probabilistic inference refers to the task of computing some desired probability given other known probabilities (evidence)
\square Exact Inference

- Enumeration
- Variable elimination
\square Approximate Inference
- Direct sampling
- Rejection sampling
- Likelihood weighting
- MCMC

Recall: Burglary network

Inference by Enumeration

Step-One:-select the entries
in the table consistent with
the evidence (this becomes
our world)

Step Two: sum over the H
Step Three: Normalize variables to get the joint distribution of the query and evidence variables

Practice Queries:
$\square \mathrm{p}(J \mid E=$ true $)$
$\square \mathrm{p}(\mathrm{A} \mid \mathrm{J}=$ true, $\mathrm{M}=$ true $)$
$\square p(B \mid E=$ true, $J=$ true $)$

Inference by Variable Elimination

Carry out sums from right to left storing intermediate results to avoid recomputation

$$
\begin{aligned}
p(B \mid j, m) & =\alpha p(B) \sum_{e} p(e) \sum_{a} p(a \mid B, e) p(j \mid a) p(m \mid a) \\
& =\alpha f_{1}(B) \sum_{e} f_{2}(e) \sum_{a} f_{3}(A, B, E) f_{4}(A) f_{5}(A) \\
& =\alpha f_{1}(B) \sum_{e} f_{2}(e) f_{6}(B, E) \\
& =\alpha f_{1}(B) f_{7}(B)
\end{aligned}
$$

Results are stored in factors (matrices)
Two operations: pointwise multiplication and summation

Approximate Inference

Analogous to uninformed/informed search algorithms that use an incremental formulation
\square Direct sampling
Rejection sampling
\square Likelihood weighting

Analogous to local search algorithms that use a complete-state formulation and make local modifications
\square Gibbs sampling (special case of MCMC methods)
Lecture proceeds on whiteboard!

Wet Grass Example

C	$\mathrm{P}(\mathrm{S}=$ true $\mid \mathrm{C})$
T	.10
F	.50

S	R	$\mathrm{P}(\mathrm{W}=$ true $\mid \mathrm{S}, \mathrm{R})$
T	T	.99
T	F	.90
F	T	.90
F	F	.01

Gibbs Sampling

Analogous to a local search algorithm where we make local modifications to our current state
\square Initial state $=$ random assignment of non-evidence variables
\square States $=$ complete assignment of values to variables
\square Transition = sample a new value for each variable in turn

Draw state space for WetGrass example on board

Gibbs Sampling

Analogous to a local search algorithm where we make local modifications to our current state \square Initial state $=$ random assignment of non-evidence variables
\square States $=$ complete assignment of values to variables
\square Transition = sample a new value for each variable in turn
Each step to a new state is recorded as a sample
In the limit, the probability of being in a state is proportional to that state's posterior probability

Gibbs Sampling

\square Gibbs sampling is an instance of a more general class of algorithms known as Markov Chain Monte Carlo (MCMC) algorithms
\square Note the use of the phrase "Markov chain" which we saw an example of earlier
\square Other methods you might hear mentioned
\square Metropolis-Hastings (a generalization of Gibbs sampling)
\square Variational method
\square Belief propagation

