HEURISTICS

Recap: Informed Search

-1 Define an evaluation function f(n) that estimates how
promising a given node is.

01 Examples:
1 UCS: priority queue with f(n) = g(n)
1 Greedy Best-First: priority queue with f(n) = h(n)

o A*; priority queue with f(n) = g(n) + h(n)

g(n) = distance from start h(n) = estimate to goal

9/15/14

Today

Reading
Read AIMA Ch. 3.5-3.6 (Informed search)
Read AIMA Ch. 4.1-4.2 (Local search)

Obijectives
A* and heuristic functions

(Introduce local search algorithms)

A" search: conditions for optimality

A heuristic h(n) is admissable if it never overestimates the

cost to the goal
0 < h(n) < h'(n) h*(n) is true cost to goal
A heuristic h(n) is consistent if

h(n) < ¢(n, a, n") + h(n’) n' is a successor

Tree-search version of A® is optimal if h(n) is admissable

Graph-search version of A” is optimal if h(n) is consistent

9/15/14

Properties of A* search

o A* expands
all nodes with f(n) < C*
some nodes with f(n) = C*

no nodes with f(n) > C*
o Optimally efficient

-1 Complete if finite number of nodes with f(n) < C*

Creating admissable heuristic functions

1 How do we construct a heuristic function that doesn’t
overestimate the cost to the goal?

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

1 What are some ideas for heuristic functionse

9/15/14

Creating admissable heuristic functions

o Two-well used heuristics:

h, = number of misplaced tiles

h, = sum of the distances of the tiles from goal positions

(Manhattan distance)

112|3

8 4

7/6|5
Goal

Why are these admissable?

2|18|3
1]6 5 6
-
218|838
4 3 4
7|6]5
283
116]4 5 6
7/ s 1l
Tiles out of Sum of
place distances out
of place

Creating admissable heuristic functions

01 Often admissable heuristics are solutions to relaxed problems with

fewer restrictions

o A tile can move from square A to square B if

A is horizontally or vertically adjacent to B

B is blank

9/15/14

Creating admissable heuristic functions

Often admissable heuristics are solutions to relaxed problems with
fewer restrictions

A tile can move from square A to square B if
A-ishorizontely-orvertically-adjacentto B relax the
B-isttemle rules

Induces h, heuristic, i.e. number of tiles out of place

Allows you to pick up the tiles and place in the correct spot

Number nodes expanded for solution depth d
d=4 d=8 d=12
IDS 112 6384 3.6 million
A'(h,) 13 39 227

Creating admissable heuristic functions

Often admissable heuristics are solutions to relaxed problems with
fewer restrictions
A tile can move from square A to square B if
A is horizontally or vertically adjacent to B relax the
-
B-is-blank rules
Induces h, heuristic, i.e. sum of distances to goal position

Allows you to move a tile to an adjacent square

Number nodes expanded for solution depth d
d=4 d=38 d=12
IDS 112 6384 3.6 million
A'(h,) 13 39 227
A'(h,) 12 25 73

9/15/14

Creating admissable heuristic functions

Number nodes expanded for solution depth d

d=4 d=8 d=12
expands .
fewer IDS 112 6384 3.6 million
nodes \ A'(h,) 13 39 227
A'(h,) 12 25 73

Creating admissable heuristic functions

01 Some heuristics are better than others
If h,(n) < hy(n) < h¥(n) then h2 dominates h1
Manhattan distance dominates tiles out of place

A-star search using h, will never expand more nodes
than A-star search using h,

Can combine admissable heuristics using max

9/15/14

9/15/14

Informed search summary

SIS,
0 Uses additional information to guide search process
o UCS — cost from start node

o Greedy best-first — estimate of cost to goal

o A" uses both cost from start + estimate to goal
o A" is optimal with admissable/consistent heuristic
0 A good heuristic is the key!

1 Consider solutions to relaxed problems

Local Search Algorithms

9/15/14

Queens problem

Recall the N

incremental

formulation

N-Queens alternative approach

o
2
O
4
(%]
()
2
Q2
o
£
0
O

c
.2
—
S

=)

S

_

o
[T

Map Colorings

Northern
Territory
Queensland
Western
Australia
South
Australia

Victoria

Tasmania

(@)

Local Search Algorithms

0 The basic idea:
Randomly initialize state
If not goal state,

a.

make local modification to generate neighbor state OR

b. enumerate all neighbor states and choose the best

Repeat step 2 until goal state is found (or out of time)

71 Requires the ability to quickly:

Generate a random (probably-not-optimal) state
Evaluate the quality of a state

Move to other states (well-defined neighborhood function)

9/15/14

