
9/15/14	

1	

HEURISTICS

Recap: Informed Search

¨  Define an evaluation function f(n) that estimates how
promising a given node is.

¨  Examples:

¤ UCS: priority queue with f(n) = g(n)

¤ Greedy Best-First: priority queue with f(n) = h(n)

¤ A*: priority queue with f(n) = g(n) + h(n)

g(n) = distance from start h(n) = estimate to goal

9/15/14	

2	

Today

¨  Reading
¤ Read AIMA Ch. 3.5-3.6 (Informed search)
¤ Read AIMA Ch. 4.1-4.2 (Local search)

¨  Objectives
¤ A* and heuristic functions
¤ (Introduce local search algorithms)

A* search: conditions for optimality

¨  A heuristic h(n) is admissable if it never overestimates the
cost to the goal

 0 ≤ h(n) ≤ h*(n) h*(n) is true cost to goal

¨  A heuristic h(n) is consistent if

 h(n) ≤ c(n, a, n’) + h(n’) n’ is a successor

¨  Tree-search version of A* is optimal if h(n) is admissable

¨  Graph-search version of A* is optimal if h(n) is consistent

9/15/14	

3	

Properties of A* search

¨  A* expands

¤  all nodes with f(n) < C*

¤  some nodes with f(n) = C*

¤  no nodes with f(n) > C*

¨  Optimally efficient

¨  Complete if finite number of nodes with f(n) ≤ C*

30 Chapter 3. Solving Problems by Searching

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Figure 3.25 FILES: figures/f-circles.eps (Tue Nov 3 16:22:45 2009). Map of Romania showing
contours at f = 380, f = 400, and f = 420, with Arad as the start state. Nodes inside a given contour
have f -costs less than or equal to the contour value.

Creating admissable heuristic functions

¨  How do we construct a heuristic function that doesn’t
overestimate the cost to the goal?

¨  What are some ideas for heuristic functions?

9/15/14	

4	

Creating admissable heuristic functions

¨  Two-well used heuristics:
¤  h1 = number of misplaced tiles
¤  h2 = sum of the distances of the tiles from goal positions

(Manhattan distance)

Why are these admissable?

Creating admissable heuristic functions

¨  Often admissable heuristics are solutions to relaxed problems with
fewer restrictions

¨  A tile can move from square A to square B if
¤  A is horizontally or vertically adjacent to B
¤  B is blank

9/15/14	

5	

Creating admissable heuristic functions

¨  Often admissable heuristics are solutions to relaxed problems with
fewer restrictions

¨  A tile can move from square A to square B if
¤  A is horizontally or vertically adjacent to B
¤  B is blank

¨  Induces h1 heuristic, i.e. number of tiles out of place
¤  Allows you to pick up the tiles and place in the correct spot

Number nodes expanded for solution depth d

d = 4 d = 8 d= 12

IDS 112 6384 3.6 million

A*(h1) 13 39 227

relax the
rules

Creating admissable heuristic functions

¨  Often admissable heuristics are solutions to relaxed problems with
fewer restrictions

¨  A tile can move from square A to square B if
¤  A is horizontally or vertically adjacent to B
¤  B is blank

¨  Induces h2 heuristic, i.e. sum of distances to goal position
¤  Allows you to move a tile to an adjacent square

Number nodes expanded for solution depth d

d = 4 d = 8 d= 12

IDS 112 6384 3.6 million

A*(h1) 13 39 227

A*(h2) 12 25 73

relax the
rules

9/15/14	

6	

Creating admissable heuristic functions

Number nodes expanded for solution depth d

d = 4 d = 8 d= 12

IDS 112 6384 3.6 million

A*(h1) 13 39 227

A*(h2) 12 25 73

expands
fewer
nodes

Creating admissable heuristic functions

¨  Some heuristics are better than others

¤  If h1(n) ≤ h2(n) ≤ h*(n) then h2 dominates h1

¤ Manhattan distance dominates tiles out of place

¤ A-star search using h2 will never expand more nodes

than A-star search using h1

¤ Can combine admissable heuristics using max

9/15/14	

7	

Informed search summary

¨  Uses additional information to guide search process

¤  UCS – cost from start node

¤  Greedy best-first – estimate of cost to goal

¤  A* uses both cost from start + estimate to goal

¤  A* is optimal with admissable/consistent heuristic

¨  A good heuristic is the key!

¤  Consider solutions to relaxed problems

Local Search Algorithms

9/15/14	

8	

Recall the N-Queens problem

incremental
formulation

…

…

N-Queens alternative approach

complete state
formulation

9/15/14	

9	

Map Colorings

74 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps
(Tue Nov 3 16:22:25 2009). (a) The principal states and territories of Australia. Coloring this map
can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region
so that no neighboring regions have the same color. (b) The map-coloring problem represented as a
constraint graph.

¨  The basic idea:
1.  Randomly initialize state
2.  If not goal state,

a.  make local modification to generate neighbor state OR
b.  enumerate all neighbor states and choose the best

3.  Repeat step 2 until goal state is found (or out of time)

¨  Requires the ability to quickly:
¤  Generate a random (probably-not-optimal) state
¤  Evaluate the quality of a state
¤  Move to other states (well-defined neighborhood function)

Local Search Algorithms

